
1/23

October 14, 2020

FakeMBAM: Backdoor delivered through software updates
decoded.avast.io/janvojtesek/fakembam-backdoor-delivered-through-software-updates/

by Jan VojtěšekOctober 14, 202022 min read

Many applications can be updated automatically and without any user interaction. This is commonly
considered a good practice from the security point of view, since it allows for quick distribution of
patches for critical vulnerabilities. However, automatic updates also carry an additional risk because
they allow the software developers to push arbitrary code to users’ machines. Unfortunately, users
often have no choice but to trust the developers that they will only use the update channel for its
intended purpose and that they will protect it from malicious third parties.

In this blog post, we’ll show that this trust might sometimes be misplaced. Specifically, we’ll show how
one torrent client and three adblockers surreptitiously installed the FakeMBAM backdoor through
automatic updates. We reverse engineered this backdoor and describe its inner workings in the
second part of this post.

An unexpected infection vector

We recently reported on a fake Malwarebytes installer that we detected on over 100,000 machines
protected by Avast. This installer attempted to pass itself off as the legitimate Malwarebytes installer,
mimicking it to a great extent – it was distributed under the same filename, it used the same icon and it
created a Malwarebytes installation directory containing legitimate PE files digitally signed by
Malwarebytes. However, that was all just a pretense, because the installer did not actually install
Malwarebytes. In fact, the installer’s main purpose was to open a backdoor to attacker-controlled
servers in order to give its operators the ability to push additional malicious payloads to the infected
machines.

https://decoded.avast.io/janvojtesek/fakembam-backdoor-delivered-through-software-updates/
https://decoded.avast.io/author/janvojtesek/
https://blog.avast.com/fake-malwarebytes-installation-files-distributing-coinminer

2/23

A map illustrating the distribution of Avast users protected from the FakeMBAM backdoor. The
backdoor is most active in Russia, Ukraine and Kazakhstan.
In our first report, we stated that we did not know how this fake installer was being distributed. Since
then, we spent some time reverse engineering the malware and investigating its infection vector. We
found that the fake installer was pushed to the victims’ machines through automatic updates of one
torrent client (download[.]studio) and three adblockers (netshieldkit[.]com ,
myadblock[.]com and netadblock[.]com). Listed on the websites of these applications are three

different companies that are supposedly behind these applications, “Sigma Software”, “GRAND
MEDIA, TOV” and “Birmon Software”. However, based on high code similarities and shared
infrastructure (and on the fact that they all distributed the very same piece of malware), we consider it
very likely that there is one actor behind all four applications.

Download Studio

To investigate the infection vector used to distribute the fake installer, we first turned to the metadata
that was submitted to us when we detected the installer in the wild. This provided us with two
important clues: The installers were supposed to be executed with the command line arguments /SP-
/VERYSILENT /SUPPRESSMSGBOXES /NORESTART /NOCANCEL /NOICONS , by a process named
dstudio-gui.exe . The first clue suggested that the installer was not supposed to be spread through

social engineering, because the above arguments instruct Inno Setup to install software silently in the
background. The second clue hinted at the possible suspect: Download Studio.

3/23

A screenshot of the Download Studio product page.
Download Studio is a free torrent client popular in Russia and Ukraine. It features an embedded library
of torrent files, offering a wide selection of movies, software, video games, music and more. As is
usually the case with torrent downloaders, there is a lot of copyrighted material that can be easily
downloaded for free using this software, which seems to be the main reason why it is so widespread.
Download Studio is detected by some anti-malware software as a potentially unwanted program (PUP)
or as riskware, because it encourages illegal behavior and puts its users at risk through downloading
torrents of unknown origin.

4/23

A screenshot of Download Studio’s movie library.
To clear up some potential confusion, let us state that there is also another piece of software named
Download Studio: a download manager developed by Conceiva. Apart from the name, this software
has nothing in common with the torrent client described in this blog post and there is therefore no
reason to doubt its legitimacy. In the rest of this blog post, the name Download Studio will denote the
torrent client described in the previous paragraph.

Since Download Studio can be used to download various software, it would make sense to think that
the fake Malwarebytes installer was distributed through it as a regular torrent file (after all there were
609 results when we searched for “Malwarebytes” inside Download Studio). However, that would not
explain the command line arguments that we observed in the wild. They simply indicated that running
the installer was not a user-initiated action and that the user might not have been aware of the installer
at all. Furthermore, the number of users that we protected from the fake installer matched our
estimates of the number of Avast users running Download Studio, which made it look like Download
Studio itself was somehow responsible. Therefore, we decided to reverse engineer it to see if it
contained hidden malicious code.

We immediately found some evident code similarities with the FakeMBAM backdoor. Both Download
Studio and the backdoor were developed using the Qt framework and they both used the very same
string obfuscation methods. One of the obfuscation methods was particularly interesting, because it
was not very effective at, well, obfuscation. It consisted of XORing the obfuscated string twice with the
same mask, so the plaintext was clearly visible in the disassembly.

http://www.conceiva.com/products/downloadstudio/default.asp

5/23

6/23

Obfuscation of the string .tmp as seen in Download Studio (left) and in the FakeMBAM backdoor
(right).
Other code similarities were found in a piece of code that computed HMAC of custom HTTP headers
or in a piece of code that created scheduled tasks using the ITaskService COM interface. We also
found that Download Studio contained a string with the exact command line arguments that we
mentioned earlier. These arguments were used to execute application updates silently in the
background. By reverse engineering Download Studio, we also found that the application updates are
supposed to be executed from a temporary directory the name of which can be described by the
regular expression ds-\d{7}\.tmp , which further matched our metadata from detections of the fake
installer.

Disassembled snippet of Download Studio, showing the code responsible for execution of automatic
updates.
At this point, it seemed almost certain that the backdoor was distributed through the automatic updates
of Download Studio. However, we wanted to be absolutely sure that this was the case, so we
monitored the updates and logged the filename and hash of each observed update. This gave us the
following list:

7/23

SHA-256 filename

16d0559067f3cc0ab19e22b935ac90d44897f09f3426f858498dfd7e667c4bda updater.exe

1d77fdc7f1b1efc8bdb0938cacc713baa70a2549412ce0be18adf2ebd133cb70 updater-
full.exe

333dd34d3efc4ded71b36f5fc38bce67de71f80b7fab43358a36e8ba7d4df0f0 updater.exe

5822d2b9717cc2a87ba54173587a3808e17f5961f42f5b1702c4a75950ecd4f6 updater.exe

6754c5e7d3c03f4e2bf29b013b1a0d532b7f4e8e145da82e6973376785938f65 DS-updater-
1.8.0.0-
full.exe

9c112b452ce839536a5cd4a3d8f4999adcb03dc3af5cbd86ca3a477c5b75127b updater.exe

b1acc87c7b010f4aafbe03cd70a6452679de07ef31bc2d5701de63d573654615 updater.exe

b3359c92cd87bd39ecbf8159666f2c7e123903751654bb8aefd714e23f8e7f7f updater.exe

b4039b6a15af681d7c02d1ff798f41023a378668b32132761c8cdffd648a5a5d DS-updater-
1.8.0.0.exe

c759c6fffe3d32424f8b29b58ee5cb11d68be5f27e50ba1d1a4755fb56602f7d updater.exe

dfb1a78be311216cd0aa5cb78759875cd7a2eeb5cc04a8abc38ba340145f72b9 MBSetup.exe

f2caa14fd11685ba28068ea79e58bf0b140379b65921896e227a0c7db30a0f2c MBSetup.exe

Just based on the filenames alone, the last two entries immediately stand out. Indeed, while all the
previous entries correspond to legitimate updates of Download Studio, the last two hashes are the
fake Malwarebytes installers that we have been investigating. They were executed in the same way as
all the other automatic updates, silently in the background and without the users’ awareness.

This means that someone tried to infect all users of Download Studio with the FakeMBAM backdoor.
While we do not know precisely what happened behind the scenes, there are three possible scenarios
that come to mind. The first one would be that the developers of Download Studio wished to
“monetize” their large install base in a very unethical way. Code reuse between Download Studio and
the FakeMBAM backdoor would suggest that this could be the case. Another explanation is that the
backdoor was spread by a group of rogue employees who acted without the knowledge of the rest of
the company. Finally, it is also possible that some unknown attacker hacked Download Studio and
carried out a successful supply chain attack.

We were looking for some answers and so we reached out to the developers of Download Studio,
asking about the backdoor. They claimed that they detected a security incident on their continuous
integration server in August 2020 and that they have since thoroughly investigated this incident and
put additional security measures in place. They did not respond to our additional inquiries about how
many of their users could be impacted by this incident and if they notified the impacted users.

Adblockers

Download Studio was not the only software that distributed the FakeMBAM backdoor. We also found
three adblockers whose automatic updates were abused in the same fashion. These adblockers are
NetShield Kit (netshieldkit[.]com), My AdBlock (myadblock[.]com) and Net AdBlock

8/23

(netadblock[.]com).

A screenshot of the NetShield Kit product page.
While these adblockers are being advertised as three different products, they are almost the same
under the hood. The ad blocking itself is implemented in Golang, using the open-source adblock
package. The websites offering downloads of the individual adblockers also look very similar and are
even hosted from the same IP address (62.112.11[.]43). It seems like two more adblockers might
be launched in the future, since adblockpro[.]net and adblockfree[.]com also resolve to this
IP address.

https://github.com/pmezard/adblock

9/23

Domain names corresponding to all three adblockers resolve to the same IP address.
We also identified code similarities between the adblockers and Download Studio, which suggests that
they were developed by the same group. What’s more, some installers of Download Studio also
present an opt-out offer to install My AdBlock.

10/23

An installer for Download

Studio that offers the installation of My AdBlock.
Same as with Download Studio, we do not know if the primary purpose of these adblockers is to
spread malware. But if this is a supply chain attack or an action of rogue employees, it would be hard
to explain why the domain bitminer[.]tech (which hosted XMRig-based coinminers not unlike the
ones distributed by the FakeMBAM backdoor) used to resolve to the same IP address as the websites
of these adblockers. Also very suspicious-looking is the FAQ section on the NetShield Kit website.

A screenshot of the FAQ section from the NetShield Kit website.
There might be another “catch” that is not mentioned in this answer.

Analysis of the FakeMBAM backdoor

Now that we’ve shown how the fake Malwarebytes installer is delivered to its victims, let’s examine
what it actually does. When the malicious installer is executed, it creates a fake Malwarebytes
installation directory where it hides the FakeMBAM backdoor. This directory is made to look identical to
the legitimate Malwarebytes installation directory, the only difference being one added malicious DLL
file, one maliciously modified DLL file and a new data.pak file containing random-looking data.

11/23

Comparison of a legitimate Malwarebytes installation directory with the fake installation directory
created by the malware.
Even though the fake installer is supposed to be executed silently in the background, the malware
authors still tried to make it appear as if it is the legitimate Malwarebytes installer, in an attempt to fool
anyone who would actually analyze it. However, there are still some noticeable differences. First of all,
unlike the legitimate installer, the fake installer is not digitally signed. The fake installer was also
created using Inno Setup, which makes it look different than the legitimate Malwarebytes installer. The
default installation directory varies slightly as well. While the fake installer installs itself into
%ProgramFiles%\Malwarebytes (or %ProgramFiles(x86)%\Malwarebytes on 64-bit Windows),

the legitimate Malwarebytes usually gets installed to %ProgramFiles%\Malwarebytes\Anti-
Malware\ . This distinction was probably introduced deliberately by the malware authors, who wanted
to avoid a clash between the malware and the legitimate Malwarebytes.

12/23

The setup wizard (left) has the typical Inno Setup look, which makes it look different than the legitimate
Malwarebytes installer (right).
Packed inside the fake installer are all the usual PE files that one would expect in a Malwarebytes
installation directory. All of those except for the two malicious DLLs are validly signed by either
Malwarebytes or Microsoft. The first of the two malicious DLL files is called Qt5WinExtras.dll . As
the name suggests, it is part of the Qt framework and a DLL with the same name can also be found in
a legitimate Malwarebytes installation. This malicious DLL file looks almost the same as the legitimate

https://www.qt.io/

13/23

Qt5WinExtras.dll , the only important difference is in the function
setCurrentProcessExplicitAppUserModelID , where the malware authors inserted a call to a

function exported from Qt5Help.dll .

Bindiff between the legitimate and backdoored Qt5WinExtras.dll . 1793 out of 1795 functions are
perfect matches.
Qt5Help.dll is the other malicious DLL file. Unlike Qt5WinExtras.dll , a file named
Qt5Help.dll cannot be found in a legitimate Malwarebytes installation directory. This DLL file was

added by the cybercriminals and it implements the actual backdoor functionality. Note that the main
Malwarebytes executable, mbam.exe , imports Qt5WinExtras.dll and calls the exported function
setCurrentProcessExplicitAppUserModelID . As described above, Qt5WinExtras.dll in turn

imports Qt5Help.dll and calls a function that exposes the malicious functionality. This means that
running the legitimate mbam.exe executable while having these two DLL files planted in the same
directory will inevitably pass the control flow to the FakeMBAM backdoor that’s hidden in
Qt5Help.dll .

The installation process of Inno Setup executables is guided by their setup scripts. These scripts are
compiled inside the installers, but they can be extracted and decompiled. The script embedded in the
fake Malwarebytes installer is relatively simple. First, it copies all the files that are packed inside the
installer into the installation directory. Then, it creates some registry values, among others
HKLM\SOFTWARE\Malwarebytes\LicenseKey , where a random-looking hexadecimal string gets

stored. As we’ll see later, this string is read by Qt5Help.dll and it contains the malware’s initial
configuration, in an encrypted form. Next, mbam.exe is added to the Windows Firewall’s exclusions.
Finally, mbam.exe gets executed with the command line argument /install . As was already
mentioned, this is the legitimate mbam.exe , digitally signed by Malwarebytes. Due to the way the
malicious DLL files have been planted in the same directory, it will inevitably load and execute the
main malicious payload, which is hidden inside Qt5Help.dll .

A snippet taken from the fake installer’s Inno setup script.

Qt5Help.dll

Qt5Help.dll is responsible for the backdoor’s persistence, configuration updates and delivery of
additional payloads. It was developed using the Qt framework and it uses functionality provided by the
framework for cryptographic operations, as well as for interaction with the underlying operating system.

14/23

Only basic obfuscation is used – most noticeable are encrypted strings, which get constructed on the
stack and are decrypted at run-time using elementary obfuscation methods, such as a simple XOR
cipher with a one-byte key.

An obfuscated string that is

constructed on the stack, encrypted with a simple XOR cipher.
Specific actions performed by Qt5Help.dll are determined by the command line arguments. If the
current process was spawned with the /install argument, Qt5Help.dll will create a new service
designed to automatically start mbam.exe during system startup. If /remove , /start or /stop
were passed on the command line, this service will get deleted, started or stopped, respectively.

If there are no command line arguments, Qt5Help.dll assumes that it is already being executed in
a service process and calls StartServiceCtrlDispatcher . As mentioned above, the Inno Setup
script initially executes mbam.exe with the /install command line argument. This installs the
service and immediately starts it. The service name of the newly created malicious service is
MBAMSvc and the display name is Malwarebytes Service . The legitimate Malwarebytes service is

named MBAMService , so this can be seen as yet another attempt to mimic Malwarebytes without
actually choosing a conflicting service name.

Decompiled

snippet of Qt5Help.dll showing the creation of the malicious service.

15/23

When the malware is executed as a service, it enters an infinite loop where it polls the C&C server for
configuration updates. The malware’s configuration is saved as an encrypted hexadecimal string in the
registry, under HKLM\SOFTWARE\Malwarebytes\LicenseKey (or
HKLM\SOFTWARE\Wow6432Node\Malwarebytes\LicenseKey on 64-bit Windows). The configuration

can be decrypted using AES in CTR mode with the key cefd8928fd7411b4c9cef7ec35cc827c and
the IV 260743d9b464883ecc7f144bfa06e36d (as can be seen in this CyberChef recipe). The key
and IV are generated as MD5 digests of the hard-coded strings MGZ_th#l}
{JmC^!:4525719127089151290 and ?0@1!elVN]9L.)2. respectively, which means that they are
the same for all victims.

Registry values created by the backdoor in HKLM\SOFTWARE\Malwarebytes .
Configuration updates are performed via HTTP GET requests using custom HTTP headers. The
malware makes requests containing the X-Build-ID and X-Build-Sign headers, where X-
Build-ID is set to the malware’s build number concatenated with the MD5 hexadecimal digest of the
encrypted payload configuration (will be described later) and X-Build-Sign is set to the HMAC-
SHA256 authentication code of the X-Build-ID header computed using the hard-coded key
JXaZy7brRJ . The C&C server checks the HMAC’s validity and returns the 404 (Not Found)

response code if it is invalid. Otherwise, if the signature is valid, the C&C server responds with the
204 (No Content) status code. However, this doesn’t mean that the C&C server does not send

back any data. It simply means that the response body is empty. The actual response from the C&C
server is encoded in the custom X-Payload HTTP response header. When the malware sees such a
header, it updates its configuration with the header’s decrypted content.

https://gchq.github.io/CyberChef/#recipe=AES_Decrypt(%7B'option':'Hex','string':'cefd8928fd7411b4c9cef7ec35cc827c'%7D,%7B'option':'Hex','string':'260743d9b464883ecc7f144bfa06e36d'%7D,'CTR','Hex','Raw',%7B'option':'Hex','string':''%7D)JSON_Beautify('%20%20%20%20',false)&input=OWRlZTI3MjY0YjUyNGY4N2ZjMTA5MDUyYTU4OTg1NmNiMzgwMjRkOTM5ZTg4ZGRjYWUwMjdmODIyM2NkNzdiYjAzZmQwZWMwMzU0YTQ0OWE4Zjk5ZDhjZDFhZjI3NGY0ZDVmNTE1NDQwYmRkYWMzZTUwYmE2MjgzMjkxYzQ3MDVlMTBiYjBjZjgwODlmNTNhMGZhNDY3NzBmODMyMmE0NTU2YmQ4MTRiNDNlZGQ1ZmM2ODI4ZDg4NWQzYWYxNjYzMGQxMTNhMjEyYzdhNzViYmYxYjM2ZjQxNDZmNDEyNDcyYjZmY2ExZWJiOTkzMWUzNzBmNjQyNzMwMDc1MjJlOGE5ODM3Y2UyMDFmYzFiOWI4NTMxZmRmODE3MGEyZjE5ZTkxNzYzNTc3NmQ2ZTYxZTkzMzcyNzM4ODE5YmMxZTViZjZiMzc2ODIyZjcyZDEzYTRhZTdjMzZhZDAwZDMzZGQ3YjEwOGM5NWJlMDYwYTdmYWUyNjU0ZDRlMGI1M2ViMWU5MWY5M2FhMmI2OGNlMjFkYTdmNDJhYjc0YmMyMjExOTQ2MmQ2MzAyMTM1NTEyODdjMWU1NDA2OGFhNzVlYjYxMDc3MDJiNDJkZDRhOWFjY2JiYjI3Nw
https://gchq.github.io/CyberChef/#recipe=HMAC(%7B'option':'Latin1','string':'JXaZy7brRJ'%7D,'SHA256')&input=MS5jZjA0YTdhOWM2N2ZhOGJhNTlkYWY4NmU3YjlmNDUyYQ

16/23

Fiddler capture of C&C

communication. Note the X-Payload response header, which contains the updated configuration.
The decrypted configuration is a JSON string that contains up to five keys in the top-level object. The
following keys are supported by the malware:

key description

api An array of C&C URLs that are regularly being queried for configuration updates.

params The replacement for placeholders in the distributed malicious payloads (will be
explained later). This configuration parameter is currently only used so that the
malware can quickly rotate mining pool IP addresses without having to update the
entire malicious payload.

refresh The number of seconds the backdoor waits before querying the C&C server again. The
default value is 7200 (two hours).

hash This seems to be a hash of some part of the configuration. Unfortunately, we were not
able to determine how this hash is computed, since it is generated by the C&C server
and the malware itself does not verify it at all. The malware only compares this value
with the hash of the previous configuration to see if there were any changes. Based
on the observed length of the hash, this seems to be an MD5 digest.

extra Extra malicious payloads to be downloaded. This is an array of three values: url ,
hash and arguments . Upon receiving a configuration containing this key, the

malware downloads a file from url , checks that its MD5 digest matches hash and if
it does, executes it while passing it arguments on the command line.

17/23

An example configuration distributed by

the C&C server.

Persistent payloads

The FakeMBAM backdoor might also drop some persistent payloads, which it will reinstall in regular
intervals in case they get removed or terminated. So far, the only persistent payloads we have seen
were cryptocurrency miners, but the malware is able to handle multiple persistent payloads at the
same time, so other malicious payloads may be added in the future.

Persistent payloads are stored encrypted in a file named data.pak , located in the fake
Malwarebytes installation directory. Decryption can be performed using AES in CTR mode using the
same key and IV as for decrypting the configuration. When decrypted, the data.pak file should start
with the magic bytes 71 72 65 73 (qres), which identifies the file format: Qt binary resource. This
is basically a custom archive format that can be unpacked using API functions provided by the Qt
framework.

The data.pak archive always contains a file named config.json , which holds the payload
configuration. In the example config.json shown below, there is only one payload, named app5 .
To install this payload, the malware first extracts all the files from the app5 directory in the
data.pak archive into payload['path'] (C:\ProgramData\VMware\VMware Tools\ in this

case). Then, it performs several setup actions based on the values of payload['type'] and
payload['pre'] , which will be explained later. When all the setup actions are finished, the backdoor

executes the file specified as payload['file'][0] while passing it payload['file'][1] on the
command line. For the example configuration shown below, the command line of
"C:\ProgramData\VMware\VMware Tools\vm3dservice.exe" /detach would get executed.

https://github.com/qt/qtbase/blob/315257eabea010bf697415cdc0f6ec1e29b74d2b/src/corelib/io/qresource.cpp

18/23

An example payload configuration that

describes a coinminer payload.
The third element of payload['file'] specifies the method used to execute the payload. The
malware can either run the payload directly by creating a new process, or it can create a one-time
scheduled task that will execute the payload in one minute and automatically delete the task afterward.
The payload can also be executed either in the security context of the malicious service or with lower
privileges. To lower the privileges, the malware attempts to steal the access token of an active user
and to execute the payload with the stolen token. There are several techniques used to steal the
token, for example, using the API functions
WTSGetActiveConsoleSessionId / WTSEnumerateSessions together with WTSQueryUserToken or

using OpenProcessToken on the explorer.exe process. All in all, there are six methods in which
the persistent payload can be executed:

method description

1 Execute the payload in a scheduled task using a stolen token and if that fails, fall back to
direct execution (also using a stolen token).

2 Execute the payload in a scheduled task in the current security context and if that fails, fall
back to direct execution (also in the current security context).

19/23

3 Execute the payload in a scheduled task using a stolen token.

4 Execute the payload directly using a stolen token.

5 Execute the payload in a scheduled task in the current security context.

6 Execute the payload directly in the current security context.

The payload['type'] configuration parameter allows the malware to perform some custom actions
based on the type of the payload. Currently, there is only one custom action specified and it is
performed only if payload['type'] equals 1 . If that is the case, the malware searches for a file
named config.json inside the current persistent payload and replaces all occurrences of the
placeholder {params} with the value of params from the volatile configuration. This is used to
specify the mining pool URL in the XMRig config file.

XMRig’s config.json file used by the malicious miner. Note the

{params} placeholder, which will get substituted by the malware with a real mining pool URL.
The final configuration parameter left to describe is payload['pre'] . This is an array describing
various setup actions that the malware is going to perform before actually running the persistent
payload. Each action is fully specified by its integer type and a string that should be interpreted in the
context of the specific type. Currently, the malware supports three setup action types:

type description

1 Terminate processes with the given name. Based on the configuration observed in the wild,
this is used to terminate previous instances of the persistent payload, not to terminate well-
known malware analysis tools.

2 Delete a scheduled task with the given name using the ITaskService COM interface.

3 Create a Windows Defender exclusion for the given filesystem path. The exclusion is added
using the IGroupPolicyObject COM interface, by creating a new Group Policy Object that
modifies HKLM\SOFTWARE\Policies\Microsoft\Windows Defender\Exclusions\Paths .

Conclusion

20/23

This blog post reports how cybercriminals abused the update process of Download Studio and three
adblockers in an attempt to deliver the FakeMBAM backdoor to hundreds of thousands of victims. It
also presents technical analysis of this backdoor, with special attention given to documenting how the
malware stores and protects its configuration and what the individual configuration parameters
represent. This information should help incident responders deal with this piece of malware. The C&C
communication protocol was also documented, which should help create network-based detection
rules, as well as implement trackers that would monitor the C&C activity.

Indicators of Compromise

The full list of IoCs is available at https://github.com/avast/ioc/tree/master/FakeMBAM.

SHA-256 filename

391817d625e14d6b5b0115b7215c07d9ef6612cccdb1d6891626fdd5609506bf Qt5Help.dll

02be0f263b95017caa20f0fed861d2126e81ec176d542cc7415074f48965f2e0 Qt5WinExtras.dll

dfb1a78be311216cd0aa5cb78759875cd7a2eeb5cc04a8abc38ba340145f72b9 MBSetup2.exe

f2caa14fd11685ba28068ea79e58bf0b140379b65921896e227a0c7db30a0f2c MBSetup.exe

C&C URLs

URL

https://apis.bytestech[.]dev/get/data

https://apis.mbytestech[.]com/get/data

https://apis.masterbyte[.]nl/get/data

https://d3ko3huol26z6z.cloudfront[.]net/get/data

https://d1t8lqzz4q8388.cloudfront[.]net/get/data

https://agonistatdata[.]site/get/data

https://apolistatdata[.]site/get/data

https://augustatdata[.]site/get/data

https://dq96vx43jmub5.cloudfront[.]net/get/data

Download URLs

URL

http://dl.bytestech[.]dev/1/mbsetup.exe

http://dl.bytestech[.]dev/2/mbsetup.exe

http://dl.bytestech[.]dev/3/mbsetup.exe

http://dl.bytestech[.]dev/mbsetup2.exe

https://github.com/avast/ioc/tree/master/FakeMBAM

21/23

http://dl.cloudnetbytes[.]com/3/mbsetup.exe

Miner payloads

SHA-256

c6a8623e74f5aad94d899770b4a2ac5ef111e557661e09e62efc1d9a3eb1201c

fea67139bc724688d55e6a2fde8ff037b4bd24a5f2d2eb2ac822096a9c214ede

b3755d85548cefc4f641dfb6af4ccc4b3586a9af0ade33cc4e646af15b4390e7

7f7b6939ae77c40aa2d95f5bf1e6a0c5e68287cafcb3efb16932f88292301a4d

c90899fcaab784f98981ce988ac73a72b0b1dbceb7824f72b8218cb5783c6791

a4447559249f3ce04be4c6d28fc15946cbb8513da76ba522f635bda6a60bedcc

8536d573c4180f5df09f183b9434636127127b2134fbf5dced0360ec6d4ee772

61b194c80b6c2d2c97920cd46dd62ced48a419a09179bae7de3a9cfa4305a830

589377832b1f1e6be2bdbef1753f30e3907c89a680f7f327999d9a1b510aa4ae

d7a06cba490da60cfbf6f120c33652393f7a1b9176170e57c6cc3649530fca6a

af49b57c1fc4781a7a38457c0b4a595dbb6b5bd7bc4ccafe15fb6b8ae29e17f8

55869621fb2321ab8c8684d10c49e50e6a0b131f215ac0bbfe7c398d08fbea34

f761242dfa8cf57faaae2c659f450bcbdc3253134556141eb6e0e282fbd98aa1

269e14bb368ef26f47416a8fcd7f556bece57f5b6113986dc733c2230efdf398

beb718a13ef88b2d7f2126226217e76ea773af609aeae870f55e8eb6ed4c497b

70830ed1357efd6b373faeaa52701369e2ae7bf9ad74e2f9355b5499ecef1123

277cb64e6cd1155c21f6f169d77036ea6e4a36288494f2dfc39d2e76191197d9

f8288ecb42478dd37335669a956b4e1adb3400928e1ec440a24882163a9cbbe8

edd918e7fe5dbb8e66464939c4a62132d5a3ba17d081c56f0a23beffb2c0ca0c

4c36a69540ffb7ac3655170148fe9f358bf0fc926baa7ef96611a7688727f76f

468968df636c3a3b7ef85b0ff528aeb403eaae7c943e4eebfbe5b98de19ff711

a10277ffaec4e691cb1fa51fd65d2b7e045b138b0689ad7f5e0b79d855822df6

data.paks

SHA-256

3036593e424bd4628593131b445408ba6a4039ef08e2fcdda1558010cc39ef37

43bcec1d5149d43afbb4439eb88f59dcdbf1de363828a022e4a0b6474440223c

503e1b04708db7bf22935beee235965e503c370692904fb0c37344fd29696036

22/23

624ae4069182064f1801beec52dee3195f15a306ccaaba4a798a5b1823fe0df8

709e71ec3837520552e76c72796c6422a0713da88e227ac423d80e6f727c32a9

7223641157529b6152503f4cf3cd2bbe358e325ebf0cef3b3930e058012c9de4

768ceff0ddc67c5ea8858c6b1e80ddcac0907ded692efd33502c85eff370852a

893b242669d076f2460a789f951611dc58ab73c47f7b582fe504d7ecd0d18f29

931e705984f60011b18aa0c38fb18f2040b87233dd94b506e7f20e504da58b6d

97e57ce2aded883a2eefc4a5cf60d162b98a3637abb2424e77083820c76422fa

97f8cd6db13a4e17d1aa84ce8950c153156b50f2eb29f5e3cd1a4496f50e7e0a

9734166814c8db737d472241e72bde437236da59a94d4991bb81589ce9271fad

Private mining pool IP addresses

IP address

142.4.214[.]15

164.90.228[.]90

134.122.75[.]91

134.122.95[.]252

188.124.36[.]164

54.93.189[.]78

18.184.46[.]95

35.180.226[.]235

46.101.118[.]136

46.101.195[.]40

185.132.176[.]153

139.59.156[.]70

15.236.226[.]247

46.101.120[.]189

34.254.170[.]193

18.159.45[.]239

52.57.156[.]29

134.122.77[.]49

35.180.36[.]209

23/23

Registry

Value

HKLM\SOFTWARE\Wow6432Node\Malwarebytes\LicenseKey

HKLM\SOFTWARE\Malwarebytes\LicenseKey

Tagged asanalysis, backdoor, FakeMBAM, malware, torrent, updates

https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/backdoor/
https://decoded.avast.io/tag/fakembam/
https://decoded.avast.io/tag/malware/
https://decoded.avast.io/tag/torrent/
https://decoded.avast.io/tag/updates/

