Tracing fresh Ryuk campaigns itw

E blog.virustotal.com/2020/10/tracing-fresh-ryuk-campaigns-itw.html

Ryuk is one of the most dangerous Ransomware families. It is (allegedly) run by a
specialized cybercrime actor that during the last 2 years mainly focused on targeting
enterprise environments. The amount of bitcoins demanded in their ransom attacks varies
depending on the target. Some of the wallets used by the group to collect the ransom
payments reached millions of dollars in a few weeks.

Protecting against such attacks is one of the main priorities for any CISO or security team.
This is a problem that should be approached from different perspectives, being prevention
(likely) the most relevant one.

Now, what can be done in terms of prevention? Information is power, the first thing we need
is understanding how the new campaigns are operating. Is this distributed through phishing
or exploiting any vulnerabilities? Do they use brute force attacks? Maybe all together?

In addition to the TTPs described above, we want as many technical details as possible. This
will result in very valuable Indicators of Compromise we can use for protecting our
infrastructure: deploying networking indicators to disrupt malware communication, making
sure our Yara rules will detect all the components of the attack, launching regular scans in
our infrastructure to detect any artefact used in the campaign.

We need to quickly deploy our fishing nets to catch everything related to fresh new
campaigns! And then to keep monitoring for a while to make sure we keep our systems
updated as attackers evolve.

In this blogpost we will describe how we used VirusTotal to detect and monitor new Ryuk
activity. However this is a very specific case where we want to show how our IDA plugin can
save us a lot of time when dealing with certain samples.

If you want to learn more about how you can keep your organization safe from ransomware
and how to easily leverage VirusTotal to monitor ransomware activity, please join us for our
next Anti-ransomware workshop - English (Live November 4th, 1pm ET) and Spanish (Live
October 28th, 17:00 CEST) versions available.

Starting the investigation

Two weeks ago new files were uploaded to VirusTotal (1, 2). According to the crowdsourced
YARA rule that identified them, these files looked like Ryuk malware.

1/6

https://blog.virustotal.com/2020/10/tracing-fresh-ryuk-campaigns-itw.html
https://www.brighttalk.com/webcast/18282/446740?utm_source=Google+Cloud+Security&utm_medium=brighttalk&utm_campaign=446740
https://www.brighttalk.com/webcast/18282/446737?utm_source=Google+Cloud+Security&utm_medium=brighttalk&utm_campaign=446737
https://www.virustotal.com/gui/file/e8a0e80dfc520bf7e76c33a90ed6d286e8729e9defe6bb7da2f38bc2db33f399/detection
https://www.virustotal.com/gui/file/cfe1678a7f2b949966d9a020faafb46662584f8a6ac4b72583a21fa858f2a2e8/detection
https://www.virustotal.com/gui/search/crowdsourced_yara_rule:0007a46435%7CMAL_Ryuk_Ransomware

() 26 engines detected this file

€8a0e80dfc520bf7e76¢33a90ed6d286€8729e9defebbb7da2f38bc2db33f399 123.50 KB
; 00196927.exe Size
- peexe
X Community v
Score
DETECTION DETAILS RELATIONS BEHAVIOR CONTENT SUBMISSIONS COMMUNITY o
Crowdsourced YARA Rules (D
Matches rule from ruleset crime_ryuk_ransomware at https://github.com/Neo23x0/signature-base

L> Detects strings known from Ryuk Ransomware

A closer look revealed that these samples have been probably dumped from memory: the
disassembled code showed plenty of memory mapped addresses, the import table was
missing and the samples crashed when executed - they were definitively corrupted PE files.

Given these were fresh samples, we certainly wanted to know more about them, especially if
they were part of a bigger campaign. In such cases, one of our best allies is looking for
similar samples that could also be part of the attack. However, when working with memory
dumps we need to be careful, given that probably some segments and memory mapped
addresses will be execution specific. If we include any of such specifics in our search, we
won't be able to find other samples.

IDA plugin to the rescue

One of the options would be to rebuild the samples we found, which is an extremely time
consuming process. Instead, we can use the VirusTotal IDA plugin (see original blog_post
announcement) to help us search for the original sample. Using the "search for similar code"
functionality we can create a query that will ignore all the memory mapped addresses, being
a perfect choice for our problem.

Taking a look at the samples with IDA, we can see there are many functions that aren't
properly identified by the disassembler engine given the use of anti-disassembly techniques.
Precisely for this reason, they are good choices for searching for code similarity.

2/6

https://github.com/VirusTotal/vt-ida-plugin
https://blog.virustotal.com/2020/02/official-virustotal-plugin-for-ida-pro-7.html

.text:35006E50 1oc_35006E50:
.text:35006E50

; CODE XREF: .text:35006E56+j

[Copy
Abort selection

w# Analyze selected area

Structure offset
¢ Undefine
#* Add breakpoint

Copy address to command line
Copy size to command line

& Xrefs graph to...
f&u Xrefs graph from...

Synchronize with

Lumina

VirusTotal » Search for bytes

Search for similar code (strict)
Search for similar functions

We just need to select the code, right-button, and search for similar code. The resulting
query will take care of ignoring all the memory mapped addresses we wanted to get rid of.

3/6

]

FILES 13

£952328213342E03FEBAIC61ED7FI68D402439ED56555389232CBDAC5ID7B155

[J CiUsers\<USER-\AppData\Local\Temp\VfaNvpXYhlan.exe B

(<]

peexe

53EE2767E91EE2AD7A9AIDABCA28D6DC56EECA7E4F407B5DFBBDBS 15F 5BDD20F

[J /dataimodaqi/samples/sum/53ee2767e91ee2ad7a9a9da8ca28dédc56eecd 7e4f407b5df0bdb515f5bdd20f

<}

peexe

®

E2F4417566A1D3BE7FF4CESEE8857@73668DFACF3D3B74@F 3E1858945816260A

(<]

peexe

D

[0 097cb948a1f011f5de11579849a08db5.virus

<}

peexe

DCC1002AAEQ4E25E31D8C297EFA791A2CTE6@ID67ACEDIAF 338EFBES

D@D7A8F588693B7CCI67FB4069419125625EB7454BA553C0416F 35FCI5307CBE

[J e8673c8a299d1647ead6f3dad565ac54.virus

<}

peexe

E72C36DFFCE4BBI98EC1A35DA6C57156A08897EB5196DCI6ID5F8B66E5ADSET3

[J e72c36dffcedbb998ecta3sdasc57156a08897eb5196dc969d5f8066e5ad5e13.bin

(<]

peexe

®

CFE1678A7F2B949966D9AB20F AAFBA6662584F8A6ACABT2583A21FA858F2A2ES

[J 00228416.exe

©

peexe

E8AQE8@DFC520BF 7E76C33A9BED6D286E8729EIDEFE6BB7DA2F 38BC2DB33F399

[J 00196927.exe

(<]

peexe

CFDC2CB47EF3D2396307C487FC3CIFES5B3802B2E57@BEEIAEA4ABTE4ED2EC28

[0 e8a0e80dfc520bf7e76c33a90ed6d286e8729e9defesbb7da2f38bc2db33399.bin_unmapped

<}

peexe

overlay

96E2DDB2FA5EF68B6B2E31DC33D75530F 3E4E3932FBA1E619DAADSBA79I90EAZS
O v2exe

(<]

peexe

5212B76A3E238759AFFDAD53865553E9D8BF 6DAFDAD27A57950E6450987371F2
O v2exe

©

The resulting listing with all the files found shows very close first submission time. Also,

peexe

4n

N4

Detections

44170

33/71

37/70

46 170

38/70

28 /71

29/70

26 /67

10/70

31/70

45170

Size

128.50 KB

128.00 KB

127.00 KB

120.50 KB

127.50 KB

123.50 KB

123.50 KB

123.50 KB

118.00 KB

124.50 KB

124.50 KB

a4

First seen
2020-09-12

20:42:42

2020-09-21
01:13:24

2020-09-23
06:10:05

2020-09-26
12:20:10

2020-09-26
12:26:37

2020-09-29
05:43:35

2020-09-30
02:58:04

2020-09-30
04:38:00

2020-09-30
13:42:21

2020-10-01
17:40:01

2020-10-01
17:55:20

@ Z:r‘:

Last seen

2020-09-12
20:42:42

2020-09-27
01:07:45

2020-09-23
06:10:05

2020-09-26
12:20:10

2020-09-26
12:26:37

2020-09-29
05:43:35

2020-09-30
02:58:04

2020-09-30
04:38:00

2020-09-30
13:42:21

2020-10-01
17:40:01

2020-10-01
17:55:20

Submitters

)
1<

EXE

9
EXE

Q
EXE

9
EXE

9
9
EXE

Q
0

EXE

Q
EXE

Q
EXE

9
9
EXE

Q
0

EXE

Q
EXE

some of them report behaviour activity, meaning they executed in the sandboxes without
crashing: maybe one of them could be our original sample.

Picking one of our initial samples and another one with behavioural information, we can see

that:

e They don't show up as similar when doing a similarity search (as expected).

* They have some long sequences of bytes in common.

D DIFF PATTERNS 35

35
35
35
35
35
35
35
35
35
35
35
35

35
35

Is this our sample?

35
35
35
35
35
35
35
35
35
35
35
35
35
35
35

A4
D4
00
24
3c
ac
64
74
84
94
A4
B4
c4
D4
F8

64
64
65
65
65
65
65
65

65
65
65
65
65
65

35
35
35
35
35
35
35
35
35
35
35
35
35
35
35

64
64
65
65
65
65
65
65
65
65
65
65
65
65
66

01
01
01
01
01
01
01
01

01
01
01
01
01
01

BC
FO
18
34

5C
6C

8C
9C
AC
BC
cc
E4

64
64
65
65
65
65
65
65
65
65
65
65
65
65
66

e T Y R T T Y R It BT)

© 00 0 O0O0O0D0DO0O0ODONDEOQQ Q

[T BT R T Y BT B BT T T Rt BNt BT)

o o o

<e -
Le-
de *
te-

© 00 0 0 0

[T T T Y BTNt NET BT T Rt IRt BT A

WO D ODOOODODOOODONDOQ Q

L Y Bt T T Y Rt RNt BN R

MmO D ODOOODDOOODODO QO

Matched bytes

394

Matches

Tags

binary

4/6

https://www.virustotal.com/gui/search/content%3A%7B66b8eb0531c074fae8%5B178%5Dc745ec67000000689c0100006a008d9550feffff52e8%5B4%5D83c40cc745f000000000c745f800000000eb09%7D/files?utm=vt_ida
https://www.virustotal.com/gui/file/cfe1678a7f2b949966d9a020faafb46662584f8a6ac4b72583a21fa858f2a2e8
https://www.virustotal.com/gui/search/name%3A%22e72c36dffce4bb998ec1a35da6c57156a08897eb5196dc969d5f8066e5ad5e13.bin%22
https://www.virustotal.com/gui/search/similar-to%3Ae72c36dffce4bb998ec1a35da6c57156a08897eb5196dc969d5f8066e5ad5e13/files
https://1.bp.blogspot.com/-Z5zeFonrhMM/X4bjL-EDHdI/AAAAAAAAEe0/ofsFmyAjhVQZ9As0GDhOevhSQchhOzvfACNcBGAsYHQ/s2624/vtdiff.png

At this point we feel confident that the new sample found is the one we were looking for.
Indeed, starting from this sample and taking a look at the (undetected) function located at
0x35008A60, we select a large sequence of instructions with the IDA plugin (as we did
before) for a new search. This results in only 4 files that match the query generated: our two
initial samples, another file that's also corrupted, and the previously chosen sample that
detonated in our sandboxes. Therefore, this is the second time that we get this file when
looking for similar code.

Going deeper, we'll see that it shares the same PE entry point that our two initial corrupted
files. Furthermore, their WinMain functions are the same. Initially it looks like a quite simple
function, composed of only three blocks of code. But, after overcoming the anti-disassembly

trick implemented to confuse IDA, we can compare both function graphs to see the similarity.

We conclude that we found the original sample.

— [

i
B
C

{I

— (T
]

RAlsE

]
Ll

. [Djé.r;f'l_c H
Rt

H]
1

i
[

e

S| o 1N

e S
[H i &
fidlsg il
T 0|5

= U.ﬂ & (|

nk

"

Left: original sample, right: initial corrupted sample

5/6

https://www.virustotal.com/gui/file/cfe1678a7f2b949966d9a020faafb46662584f8a6ac4b72583a21fa858f2a2e8/detection
https://www.virustotal.com/gui/search/content%3A%7B8b85e8feffff8a4801884de48385e8feffff01807de40075e78bbde8feffff8bb5fcfdffff8b95f8fdffff8bcac1e902f3a58bca83e103f3a46a008d85c4fcffff50ff15%5B4%5De9e5fdffff833d%5B4%5D00751b837d080874156a006a006a0068%5B4%5D6a006a00ff15%5B4%5D837d080875316a006a006a0068%5B4%5D6a006a00ff15%5B10%5D33d2b910270000f7f181c250c3000052ff15%5B14%5D83c404c78520fdffff00000000c7851cfdffff00000000c745e800000000eb098b55e883c2018955e8837de85a0f8d880000006a04680010000068b03600006a00ff15%5B4%5D8b4de8c1e1058981280902356a046800100000689a420f006a00ff15%5B4%5D8b55e8c1e20589822c0902356a04680010000068102700006a00ff15%5B4%5D8b4de8c1e1058981300902358b55e8c1e20583ba%5B4%5D00740f8b45e8c1e00583b8%5B4%5D007505e917170000e965ffffff%7D/files?utm=vt_ida

What now?

At the time of this research there isn't any Yara rule detecting the original sample and it has
28/71 positives. Inside this file we can find encrypted strings that are extremely useful for
pivoting to find additional samples. These strings are included in the corrupted files as well,
stored in the ".gfids" segment at the end of the file. In other words, they aren't located in the
".data" segment as seen in the original sample. This new location reveals that probably these
strings were initially encrypted and became decrypted after execution, thus they can be seen
as footprints of the original sample.

[7] .data;3501ED20 0000000D c Ddvdpl440dim gzgz al As{c}cl

[5] .data:3501ED30 00000015 C FrystDdswirfCqovf{vD o

[5] .data:3501ED48 00000010 c FrystFsgctelaui W Quick filter . ~F

i .data;3501ED58 0000000E C FrystKbujDaua T, S

[5] .data:3501ED68 00000011 C FrystGfuvrozHctj Setup...

[5] .data:3501ED7C 00000014 C FrystUfngasfCqovfiv Hide column

[5] .data:3501ED90 00000012 c FrystJfvjasiPcscn Columns...

[5] .data:3501EDA9 00000161 C YfIPuyqKmWxOwvkiLnkhWhVxmEhdcMpb)Cy YRRV b Search for string . Bkl
[5 .data:3501EF20 00000007 C $\t.Fs\aV

[5 .data:3501EF48 0000000C C VXdira;78}n

Using the VT-IDA plugin we can search for other files that contain these encrypted strings.
As expected, the four files found before are listed now, but there are two other samples that
were submitted three days prior to our original sample and can also be investigated.

Moreover, all these new strings can be used to improve the original Yara rule that brought us
here, or to create a new one! Remember to keep it running as a LiveHunt to make sure you
keep track of any new Indicators of Compromise and to detect anything new attackers use in
their campaigns. You can find all the details about the campaign described in this blogpost in
the following VT-Graph.

This post was co-authored by Vicente Diaz.

6/6

https://www.virustotal.com/gui/search/content%3A%7B506963756f7670687620426273672145737c72776f6a7261726b6b6420537472796a6665732078342e33%7D/files?utm=vt_ida
https://www.virustotal.com/graph/embed/gdaea8314781b48479c5a2aa9fa49a23e7a1d12ac04724a8f9fcbae696a7fbbd1
https://twitter.com/trompi

