Sophisticated new Android malware marks the latest
evolution of mobile ransomware

microsoft.com/security/blog/2020/10/08/sophisticated-new-android-malware-marks-the-latest-evolution-of-mobile-
ransomware/

October 8, 2020

Attackers are persistent and motivated to continuously evolve — and no platform is immune.
That is why Microsoft has been working to extend its industry-leading endpoint protection
capabilities beyond Windows. The addition of mobile threat defense into these capabilities
means that Microsoft Defender for Endpoint (previously Microsoft Defender Advanced Threat
Protection) now delivers protection on all major platforms.

Microsoft’'s mobile threat defense capabilities further enrich the visibility that organizations
have on threats in their networks, as well as provide more tools to detect and respond to
threats across domains and across platforms. Like all of Microsoft’s security solutions, these
new capabilities are likewise backed by a global network of threat researchers and security
experts whose deep understanding of the threat landscape guide the continuous innovation
of security features and ensure that customers are protected from ever-evolving threats.

For example, we found a piece of a particularly sophisticated Android ransomware with novel
techniques and behavior, exemplifying the rapid evolution of mobile threats that we have also
observed on other platforms. The mobile ransomware, detected by Microsoft Defender for
Endpoint as AndroidOS/MalLocker.B, is the latest variant of a ransomware family that’s been
in the wild for a while but has been evolving non-stop. This ransomware family is known for
being hosted on arbitrary websites and circulated on online forums using various social
engineering lures, including masquerading as popular apps, cracked games, or video

1/14

https://www.microsoft.com/security/blog/2020/10/08/sophisticated-new-android-malware-marks-the-latest-evolution-of-mobile-ransomware/
https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/microsoft-defender-for-endpoint-adds-depth-and-breadth-to-threat/ba-p/1695824

players. The new variant caught our attention because it's an advanced malware with
unmistakable malicious characteristic and behavior and yet manages to evade many
available protections, registering a low detection rate against security solutions.

As with most Android ransomware, this new threat doesn’t actually block access to files by
encrypting them. Instead, it blocks access to devices by displaying a screen that appears
over every other window, such that the user can’t do anything else. The said screen is the
ransom note, which contains threats and instructions to pay the ransom.

“MB POCCUA

MWHWUCTEPCTBO BHYTPEHHWX OEN

-—- gresamacsass

6yaeT aBTOMaTUYECKN pa36/10KMpOBaH, Balln
AaHHble 6yayT yaaneHbl c cepeepoB KHB, a
YyronoBHoe Aeno npeKpaileHo.

mreraem s e e me— s == =

23:59:37

Mpu nonbITKax BbIKNIOYEHUA UK Nepe3anyckKa
ycTpoiictea, CHETHYUK BPEMEHU 6ypeT
aBTOMaTU4YeCKM YMEeHbLUATbCA Ha 4yac, Npu
NOMIHOCTbIO BbIK/NIOYEHOM ycTpoiicee, CHETHUK
BPEMEHW npogomxaeTt pabortatb. Ecnu onnarta
wrpada He NOCTYNUT B TeYEHUMU 24 4y cyMMa
wrpada yasaueaertca. Ecnu onnara wrpada

He NOCTYNUT B TeYeHUU 48 4 BCEM KOHTaKTam
Bawero ycTpoicTBa, byaeT oTnpaBneHo cMc
yeegomneHue ot umeHn KHB Poccunickou
depepauum (Co CKPMHILOTOM Bawuero 3kpaHa),

0 TOM 4TO UHTepdeiic Bawero ycTpoicTBa

6611 3ABJIOKUPOBAH 3A HEOOQHOKPATHOE
MNOCELLEHUE CAUTOB COAEPXALUME BUAEO
CO CLLEHAMM JETCKOW NOPHOIPA®UU, a Tak
e Ha ocHoBaHuM cT. 242 YK PO, 42 cT. 41 KAC
P® u cT. 31 YKI P®, no mecTy XuUTenbcTBa, byaer
oTnpaeneH Hapsaj AnA c6opa BewecTBEHHbIX
AOKa3aTenbCTB, U3bATUA 3a6/10KUPOBAHHOIO
YCTPOWCTBA M Ballero safiepXxaHusa Ana aauv

NOACHEeHMUA.

Figure 1. Sample ransom note used by older ransomware variants

2/14

What'’s innovative about this ransomware is how it displays its ransom note. In this blog, we’ll
detail the innovative ways in which this ransomware surfaces its ransom note using Android
features we haven’t seen leveraged by malware before, as well as incorporating an open-
source machine learning module designed for context-aware cropping of its ransom note.

New scheme, same goal

In the past, Android ransomware used a special permission called
“‘SYSTEM_ALERT_WINDOW?” to display their ransom note. Apps that have this permission
can draw a window that belongs to the system group and can’t be dismissed. No matter what
button is pressed, the window stays on top of all other windows. The notification was
intended to be used for system alerts or errors, but Android threats misused it to force the
attacker-controlled Ul to fully occupy the screen, blocking access to the device. Attackers
create this scenario to persuade users to pay the ransom so they can gain back access to
the device.

To catch these threats, security solutions used heuristics that focused on detecting this
behavior. Google later implemented platform-level changes that practically eliminated this
attack surface. These changes include:

1. Removing the SYSTEM_ALERT_WINDOW error and alert window types, and
introducing a few other types as replacement

2. Elevating the permission status of SYSTEM_ALERT_WINDOW to special permission
by putting it into the “above dangerous” category, which means that users have to go
through many screens to approve apps that ask for permission, instead of just one click

3. Introducing an overlay kill switch on Android 8.0 and later that users can activate
anytime to deactivate a system alert window

To adapt, Android malware evolved to misusing other features, but these aren’t as effective.
For example, some strains of ransomware abuse accessibility features, a method that could
easily alarm users because accessibility is a special permission that requires users to go
through several screens and accept a warning that the app will be able to monitor activity via
accessibility services. Other ransomware families use infinite loops of drawing non-system
windows, but in between drawing and redrawing, it's possible for users to go to settings and
uninstall the offending app.

The new Android ransomware variant overcomes these barriers by evolving further than any
Android malware we've seen before. To surface its ransom note, it uses a series of
techniques that take advantage of the following components on Android:

1. The “call” notification, among several categories of notifications that Android supports,
which requires immediate user attention.

3/14

https://www.androidpolice.com/2019/03/16/android-q-steps-up-the-fight-up-against-overlay-based-malware/

2. The “onUserLeaveHint()” callback method of the Android Activity (i.e., the typical GUI
screen the user sees) is called as part of the activity lifecycle when the activity is about
to go into the background as a result of user choice, for example, when the user
presses the Home key.

The malware connects the dots and uses these two components to create a special type of
notification that triggers the ransom screen via the callback.
PendingIntent ransomActivity = HelperOne.getIntent(context);
Notification.Builder notificationBuilder = new Notification.Builder(context, Helper.notID);
notificationBuilder.setSmallIcon(HelperThree.getIconID("iaevwhnmfi™));
notificationBuilder.setContentTitle(context.getString(HelperThree.getID("zebjpsro”)));
notificationBuilder.setContentText(context.getString(HelperThree.getID("qgukbdhnic")));
notificationBuilder.setCategory(“call™);
notificationBuilder.setAutoCancel(true);
notificationBuilder.setFullScreenIntent(ransomActivity, true);
notificationBuilder.setWhen(System.currentTimeMillis());
Helper.createNotificationChannel(context);
NotificationManager w4 = (NotificationManager)HelperThree.getSystemService(context, "notification");
if(v4 1= null) {
v4.notify(Integer.parselnt(Helper.notID), notificationBuilder.build());
}

Figure 2. The notification with full intent and set as “call’ category

As the code snippet shows, the malware creates a notification builder and then does the
following:

1. setCategory(“call”’) — This means that the notification is built as a very important
notification that needs special privilege.

2. setFullScreenlintent() — This API wires the notification to a GUI so that it pops up when
the user taps on it. At this stage, half the job is done for the malware. However, the
malware wouldn’t want to depend on user interaction to trigger the ransomware screen,
so, it adds another functionality of Android callback:

a/14

public class RansomActivity extends Activity {
public static volatile RansomActivity activityObj;

@override [/ android.app.Activity
public wvoid onBackPressed() {
}

@override [/ android.app.Activity

protected wvoid onCreate(Bundle bundle) {
super.onCreate(bundle);
RansomActivity.activityobj = this;
HelperTwo.putActivityObj(this);
HelperThree.checkPresenceOfVirtualMachines(this);
this.getWindow().addFlags(RansomActivity.getFlags());

try {
Context context = this.getApplicationContext();
this.setContentView(WebViewAggregator.getWebView(context, context.getCacheDir().getPath()));

catch(Exception exception) {
exception.printStackTrace();

}

@override // android.app.Activity
protected void onUserLeaveHint() {
super.onUserLeaveHint();
this.startActivity(new Intent(this, RansomActivity.class));

}

public static int getFlags() {
return 6x680480;

}
}

Figure 3. The malware overriding onUserLeaveHint

As the code snippet shows, the malware overrides the onUserLeaveHint() callback function
of Activity class. The function onUserLeaveHint() is called whenever the malware screen is
pushed to background, causing the in-call Activity to be automatically brought to the
foreground. Recall that the malware hooked the RansomActivity intent with the notification
that was created as a “call” type notification. This creates a chain of events that triggers the
automatic pop-up of the ransomware screen without doing infinite redraw or posing as
system window.

Machine learning module indicates continuous evolution

As mentioned, this ransomware is the latest variant of a malware family that has undergone
several stages of evolution. The knowledge graph below shows the various techniques this
ransomware family has been seen using, including abusing the system alert window, abusing
accessibility features, and, more recently, abusing notification services.

5/14

Variant that abuses
system alert window

Variant that abuses
accessibility features

Code shared by all
variants

Variant that abuses
notification services

Figure 4. Knowledge graph of techniques used by ransomware family

This ransomware family’s long history tells us that its evolution is far from over. We expect it
to churn out new variants with even more sophisticated techniques. In fact, recent variants
contain code forked from an open-source machine learning module used by developers to
automatically resize and crop images based on screen size, a valuable function given the
variety of Android devices.

The frozen TinyML model is useful for making sure images fit the screen without distortion. In
the case of this ransomware, using the model would ensure that its ransom note—typically
fake police notice or explicit images supposedly found on the device—would appear less
contrived and more believable, increasing the chances of the user paying for the ransom.

The library that uses tinyML is not yet wired to the malware’s functionalities, but its presence
in the malware code indicates the intention to do so in future variants. We will continue to
monitor this ransomware family to ensure customers are protected and to share our findings
and insights to the community for broad protection against these evolving mobile threats.

Protecting organizations from threats across domains and platforms

6/14

Mobile threats continue to rapidly evolve, with attackers continuously attempting to sidestep
technological barriers and creatively find ways to accomplish their goal, whether financial
gain or finding an entry point to broader network compromise.

This new mobile ransomware variant is an important discovery because the malware exhibits
behaviors that have not been seen before and could open doors for other malware to follow.
It reinforces the need for comprehensive defense powered by broad visibility into attack
surfaces as well as domain experts who track the threat landscape and uncover notable
threats that might be hiding amidst massive threat data and signals.

Microsoft Defender for Endpoint on Android, now generally available, extends Microsoft’s
industry-leading endpoint protection to Android. It detects this ransomware
(AndroidOS/MallLocker.B), as well as other malicious apps and files using cloud-based
protection powered by deep learning and heuristics, in addition to content-based detection. It
also protects users and organizations from other mobile threats, such as mobile phishing,
unsafe network connections, and unauthorized access to sensitive data. Learn more about
our mobile threat defense capabilities in Microsoft Defender for Endpoint on Android.

Malware, phishing, and other threats detected by Microsoft Defender for Endpoint are
reported to the Microsoft Defender Security Center, allowing SecOps to investigate mobile
threats along with endpoint signals from Windows and other platforms using Microsoft
Defender for Endpoint’s rich set of tools for detection, investigation, and response.

Threat data from endpoints are combined with signals from email and data, identities, and
apps in Microsoft 365 Defender (previously Microsoft Threat Protection), which orchestrates
detection, prevention, investigation, and response across domains, providing coordinated
defense. Microsoft Defender for Endpoint on Android further enriches organizations’ visibility
into malicious activity, empowering them to comprehensively prevent, detect, and respond to
against attack sprawl and cross-domain incidents.

Technical analysis

Obfuscation

On top of recreating ransomware behavior in ways we haven’t seen before, the Android
malware variant uses a new obfuscation technique unique to the Android platform. One of
the tell-tale signs of an obfuscated malware is the absence of code that defines the classes
declared in the manifest file.

7/14

https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/microsoft-defender-for-endpoint-adds-depth-and-breadth-to-threat/ba-p/1695824
https://techcommunity.microsoft.com/t5/microsoft-defender-atp/announcing-microsoft-defender-atp-for-android/ba-p/1480787
https://www.microsoft.com/microsoft-365/windows/microsoft-defender-atp?rtc=1
https://www.microsoft.com/en-us/security/business/threat-protection/integrated-threat-protection

android:allowBackup="true" android:icon="{@drawable/
id:name="uwr.oqtlajc 3CH ~gEruDv" android:them
" android:label=

1 android:name="an id.intent.action.M
y android:name="an id.intent.ca y . LAUNCHER"

android:autoRemoveFromRecents="true" android:name="rhweryho.rjnz.nzaxm.c(VXfLdxbLo"

android:showOnLockScreen=" " android:showWhenLocked="true"
iver android:enabled="t ! rue” android:name="rhw .rjnz.jvwinh.Lldoiorf

ermission="android.pe . “OMPLETED"
Filte
android:
1 android:name="an .inten
n android:name=" intent.
on android:name="android.intent.acti

Figure 5. Manifest file
The classes.dex has implementation for only two classes:

1. The main application class gCHotRrgEruDv, which is involved when the application
opens
2. A helper class that has definition for custom encryption and decryption

This means that there’s no code corresponding to the services declared in the manifest file:
Main Activity, Broadcast Receivers, and Background. How does the malware work without
code for these key components? As is characteristic for obfuscated threats, the malware has
encrypted binary code stored in the Assets folder:

8/14

v |G uwr.oqtlajc.wksayc
X| Manifest
@= Certificate
Bytecode
v [Resources

(= drawable
(= values
v [Assets

27| CuffGmrQRT
7| HtP1s

Figure 6. Encrypted executable code in Assets folder

When the malware runs for the first time, the static block of the main class is run. The code is
heavily obfuscated and made unreadable through name mangling and use of meaningless
variable names:

{
MalApp.decryptedvalueOne = MalApp.getDecryptedvalueThroughAction("nWmSNwWgLas", lse).getAction();

MalApp.decryptedvalueTwo = MalApp.getDecryptedvalueThroughActionTwo("aZiprBsYYzCpB",) .getAction();

MalApp.decryptedvalueThree = MalApp.getDecryptedvalueThroughActionThree("WeWgF",) .getAction()

MalApp.appDexFilePath = null;
MalApp.loDexPath =

Figure 7. Static block

Decryption with a twist

The malware uses an interesting decryption routine: the string values passed to the
decryption function do not correspond to the decrypted value, they correspond to junk code
to simply hinder analysis.

On Android, an Intent is a software mechanism that allows users to coordinate the functions
of different Activities to achieve a task. It's a messaging object that can be used to request
an action from another app component.

9/14

The Intent object carries a string value as “action” parameter. The malware creates an Intent
inside the decryption function using the string value passed as the name for the Intent. It
then decrypts a hardcoded encrypted value and sets the “action” parameter of the Intent
using the setAction API. Once this Intent object is generated with the action value pointing to
the decrypted content, the decryption function returns the Intent object to the callee. The
callee then invokes the getAction method to get the decrypted content.

ic Intent getDecryptedvalueThroughActionThree(String randomIntentName, boolean flag) {

Intent randomIntent = new Intent(randomIntentName);
randomIntent.addCategory("alarm");
randomIntent.addFlags(©x500000);
String alarmAction = CryptoruUtil.decryptArrayAndBuildString(null, null, nes [1{1, e, 39, 21, 41, 66, 110,
12e, 27, 25, 11, ex2e, 6, ex3e, 2, 90, 33, 16, ox75, 11, 42, 37, 3, 93});
if(flag) {

Intent alarmIntentLoc = new Intent();

if(TextUtils.isEmpty(randomIntentName)) {

randomIntentName = null;

}

alarmIntentLoc.setComponent(new ComponentName(((Context)null), randomIntentName));
alarmIntentLoc.addFlags(@x14008000);

}

randomIntent.setAction(alarmAction);
return randomIntent;

Figure 8. Decryption function using the Intent object to pass the decrypted value

Payload deployment

Once the static block execution is complete, the Android Lifecycle callback transfers the
control to the OnCreate method of the main class.

d onCreate() {
.onCreate();

String fileToByDecrypted = MalApp.getDecryptedValueThroughActionEight ("kXz tX", false).getAction();
this.decryptAssetToDex(fileToByDecrypted, MalApp.loDexPath);

fileToByDecrypted = MalApp.getDecryptedvalueThroughActionNine("ZpTdigDt", false).getAction();
this.decryptAssetToDex(fileToByDecrypted, MalApp.appDexFilePath);
MalApp.installDecryptedDexAndStart(this);

Figure 9. onCreate method of the main class decrypting the payload

Next, the malware-defined function decryptAssetToDex (a meaningful name we assigned
during analysis) receives the string “CuffGmrQRT" as the first argument, which is the name
of the encrypted file stored in the Assets folder.

10/14

Intent getDecryptedvalueThroughActionNine(String randomIntentString, boolean flag) {
Intent randomIntentObject = new Intent(randomIntentString);
randomIntentObject.addCategory(’ rm");
randomIntentObject.addFlags(@x500000) ;
String decryptedval = CryptoruUtil.decryptArrayAndBuildString(new byte[]{42, 1, 53, 3, 29, 21, 51,
6, 58, 38});

if(flag) {
Intent localIntent = new Intent();
if(TextUtils.isEmpty(randomIntentString)) {
randomIntentString = 5

1

localIntent.setComponent(new ComponentName(((Context)), randomIntentString));
localIntent.addFlags(©x14008000);
}

randomIntentObject.setAction(decryptedval);
return randomIntentObject;

Figure 10. Decrypting the assets

After being decrypted, the asset turns into the .dex file. This is a notable behavior that is
characteristic of this ransomware family.

Figure 11. Asset file before and after decryption

Once the encrypted executable is decrypted and dropped in the storage, the malware has
the definitions for all the components it declared in the manifest file. It then starts the final
detonator function to load the dropped .dex file into memory and triggers the main payload.

11/14

ivate static void installDecryptedDexAndStart(Application appObj) {

try {
File outDexDir = appObj.getDir("outDex", @);
BaseDexClassLoaer bdcl = new BaseDexClassLoader(dexLoader, outDexDir, null, appObj.getClassLoader());
Class dexInjectorCls = bdcl.loadClass("com.my.dexloader.DexInjector");
Method installDex = dexInjectorCls.getMethod("installDex", ClassLoader.class, File.class, File.class);
installDex.invoke(null, this.getClassLoader(), outDexDir, MalApp.appDexFilePath);
Class malwarePayloadCls = Class.forName("rhweryho.rjnz.gvmthHtyN");
Method payloadMethod = malwarePayloadCls.getMethod("XoqF", Application.class, WeakHashMap.class);
payloadMethod.invoke(null, appObj, MalApp.populateConfigMap());

}

catch(Exception e) {
e.printStackTrace();

}

Figure 12. Loading the decrypted .dex file into memory and triggering the main payload

Main payload

When the main payload is loaded into memory, the initial detonator hands over the control to
the main payload by invoking the method XogF (which we renamed to triggerinfection during
analysis) from the gvmthHtyN class (renamed to PayloadEntry).

ss PayloadEntry {

atic final String TAG = "gvmthHtyN.class";

private static void writeConfigToPrefs(WeakHashMap config) {
SharedPreferences.Editor prefs = Utils.getSharedPrefsObj().edit();
prefs.putString(“number", ((String)config.get("number"”)));
prefs.putString(“api”, ((String)config.get("api"”)));
prefs.putString(“url”, ((String)config.get("url”)));
prefs.apply();

public static void triggerInfection(Application appObj, WeakHashMap config) {
AuxiliaryMalApp.init(appObj);
Utils.writeStatusOfVMPresenceToPrefs(appObj);
try {
AuxiliaryMalApp.initComponents(app0Obj);
PayloadEntry.writeConfigToPrefs(config);
X
catch(Exception e) {
e.printStackTrace();

Log.e("gvmthHtyN.class", "obfs_loadDexFile");

Figure 13. Handover from initial module to the main payload

As mentioned, the initial handover component called triggerinfection with an instance of
appObj and a method that returns the value for the variable config.

populateConfigMap() {
ew WeakHashMap();

mapObj.put(MalApp.getDecryptedvalueThroughAction12("hhnF GwQ", false).getAction(), MalApp.getDecryptedval

mapObj.put(MalApp.getDecryptedValueThroughAction19("KaIeHuIDQ", false).getAction(), MalApp.decryptedValueOn|

mapObj.put(MalApp.getDecryptedValueThroughAction13("ScWpTmloTtm", false).getAction(), MalApp.decryptedValue|

mapObj.put(MalApp.getDecryptedvalueThroughAction21("dvTpBi (", false).getAction(), MalApp.decryptedvalu

return mapObj;

Figure 14. Definition of populate ConfigMap, which loads the map with values

Correlating the last two steps, one can observe that the malware payload receives the
configuration for the following properties:

1. number — The default number to be send to the server (in case the number is not
available from the device)

2. api — The API key

3. url — The URL to be used in WebView to display on the ransom note

The malware saves this configuration to the shared preferences of the app data and then it
sets up all the Broadcast Receivers. This action registers code components to get notified
when certain system events happen. This is done in the function initComponents.

13/14

lic static void initMalBroadcastReceiver(Context context) {
1F(MalBroadca5tRec91ver isRegistered) {
return;

MalBroadcastReceiver broadcastRecieverObj = new MalBroadcastReceiver();
IntentFilter filterObj = new IntentFilter();
filterObj.addAction("android.intent.action.USER_PRESENT");
filteroObj.addAction("android.intent.action.INPUT_METHOD_ CHANGED");
filteroObj.addAction("android.intent.action.ACTION POWER_CONNECTED");
filterObj.addAction("android.intent.action.ACTION POWER_DISCONNECTED");
filterobj.addAction("android.intent.action.BOOT_COMPLETED");
filteroObj.addAction("android.intent.action.TIME_SET");
filteroObj.addAction("android.intent.action.TIME_TICK");
filteroObj.addAction("android.net.wifi.p2p.STATE_CHANGED");
filterObj.addAction("android.net.wifi.STATE_CHANGE");
filterObj.addAction("android.media.VIBRATE_SETTING_CHANGED");
filteroObj.addAction("android.media.AUDIO_BECOMING_NOISY");
filterObj.addAction("android.media.SCO_AUDIO_STATE_CHANGED");
filterobj.addAction("android.media.RINGER_MODE_CHANGED");
filteroObj.addAction("android.net.conn.CONNECTIVITY_ CHANGE");
try {

Utils.registerReceiverWrapper(context, broadcastReciever0Obj, filteroObj);

MalBroadcastReceiver.isRegistered = true;

}

catch(Exception unused_ex) {

}

Figure 15. Initializing the BroadcastReceiver against system events

From this point on, the malware execution is driven by callback functions that are triggered
on system events like connectivity change, unlocking the phone, elapsed time interval, and
others.

Dinesh Venkatesan

Microsoft Defender Research

14/14

