
1/17

MosaicRegressor: Lurking in the Shadows of UEFI
securelist.com/mosaicregressor/98849/

Authors

 Mark Lechtik

 Igor Kuznetsov

 Yury Parshin

 Part II. Technical details (PDF)

UEFI (or Unified Extensible Firmware Interface) has become a prominent technology that is
embedded within designated chips on modern day computer systems. Replacing the legacy
BIOS, it is typically used to facilitate the machine’s boot sequence and load the operating
system, while using a feature-rich environment to do so. At the same time, it has become the
target of threat actors to carry out exceptionally persistent attacks.

https://securelist.com/mosaicregressor/98849/
https://securelist.com/author/marklechtik/
https://securelist.com/author/igorsoumenkov/
https://securelist.com/author/yuriparshin/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/07080558/MosaicRegressor_Technical-details.pdf

2/17

One such attack has become the subject of our research, where we found a compromised
UEFI firmware image that contained a malicious implant. This implant served as means to
deploy additional malware on the victim computers, one that we haven’t come across thus
far. To the best of our knowledge, this is the second known public case where malicious
UEFI firmware in use by a threat actor was found in the wild.

Throughout this blog we will elaborate on the following key findings:

We discovered rogue UEFI firmware images that were modified from their benign
counterpart to incorporate several malicious modules;
The modules were used to drop malware on the victim machines. This malware was
part of a wider malicious framework that we dubbed MosaicRegressor;
Components from that framework were discovered in a series of targeted attacks
pointed towards diplomats and members of an NGO from Africa, Asia and Europe, all
showing ties in their activity to North Korea;
Code artefacts in some of the framework’s components and overlaps in C&C
infrastructure used during the campaign suggest that a Chinese-speaking actor is
behind these attacks, possibly having connections to groups using the Winnti
backdoor;

The attack was found with the help of Firmware Scanner, which has been integrated into
Kaspersky products since the beginning of 2019. This technology was developed to
specifically detect threats hiding in the ROM BIOS, including UEFI firmware images.

Current State of the Art

Before we dive deep into our findings, let us have a quick recap of what UEFI is and how it
was leveraged for attacks thus far. In a nutshell, UEFI is a specification that constitutes the
structure and operation of low-level platform firmware, so as to allow the operating system to
interact with it at various stages of its activity.

This interaction happens most notably during the boot phase, where UEFI firmware
facilitates the loading of the operating system itself. That said, it can also occur when the OS
is already up and running, for example in order to update the firmware through a well-defined
software interface.

Considering the above, UEFI firmware makes for a perfect mechanism of persistent malware
storage. A sophisticated attacker can modify the firmware in order to have it deploy malicious
code that will be run after the operating system is loaded. Moreover, since it is typically
shipped within SPI flash storage that is soldered to the computer’s motherboard, such
implanted malware will be resistant to OS reinstallation or replacement of the hard drive.

 This type of attack has occurred in several instances in the past few years. A prominent
example is the LowJax implant discovered by our friends at ESET in 2018, in which patched
UEFI modules of the LoJack anti-theft software (also known as Computrace) were used to

https://www.kaspersky.com/enterprise-security/wiki-section/products/anti-rootkit-and-remediation-technology
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/

3/17

deploy a malicious user mode agent in a number of Sofacy \ Fancy Bear victim machines.
The dangers of Computrace itself were described by our colleagues from the Global
Research and Analysis Team (GReAT) back in 2014.

Another example is source code of a UEFI bootkit named VectorEDK which was discovered
in the Hacking Team leaks from 2015. This code consisted of a set of UEFI modules that
could be incorporated into the platform firmware in order to have it deploy a backdoor to the
system which will be run when the OS loads, or redeploy it if it was wiped. Despite the fact
that VectorEDK’s code was made public and can be found in Github nowadays, we hadn’t
witnessed actual evidence of it in the wild, before our latest finding.

Our Discovery

During an investigation, we came across several suspicious UEFI firmware images. A
deeper inspection revealed that they contained four components that had an unusual
proximity in their assigned GUID values, those were two DXE drivers and two UEFI
applications. After further analysis we were able to determine that they were based on the
leaked source code of HackingTeam’s VectorEDK bootkit, with minor customizations.

Rogue components found within the compromised UEFI firmware

The goal of these added modules is to invoke a chain of events that would result in writing a
malicious executable named ‘IntelUpdate.exe’ to the victim’s Startup folder. Thus, when
Windows is started the written malware would be invoked as well. Apart from that, the
modules would ensure that if the malware file is removed from the disk, it will be rewritten.
Since this logic is executed from the SPI flash, there is no way to avoid this process other
than eliminating the malicious firmware.

Following is an outline of the components that we revealed:

https://securelist.com/absolute-computrace-revisited/58278/
https://github.com/hackedteam/vector-edk
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/01141821/sl_MosaicRegressor_01.png

4/17

SmmInterfaceBase: a DXE driver that is based on Hacking Team’s ‘rkloader’
component and intended to deploy further components of the bootkit for later
execution. This is done by registering a callback that will be invoked upon an event of
type EFI_EVENT_GROUP_READY_TO_BOOT. The event occurs at a point when
control can be passed to the operating system’s bootloader, effectively allowing the
callback to take effect before it. The callback will in turn load and invoke the
‘SmmAccessSub’ component.
Ntfs: a driver written by Hacking Team that is used to detect and parse the NTFS file
system in order to allow conducting file and directory operations on the disk.
SmmReset: a UEFI application intended to mark the firmware image as infected. This
is done by setting the value of a variable named ‘fTA’ to a hard-coded GUID. The
application is based on a component from the original Vector-EDK code base that is
named ‘ReSetfTA’.

Setting of the fTA variable with a predefined GUID to mark the execution of the bootkit

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/01141941/sl_MosaicRegressor_02.png

5/17

SmmAccessSub: the main bootkit component that serves as a persistent dropper for
a user-mode malware. It is executed by the callback registered during the execution of
‘SmmInterfaceBase’, and takes care of writing a binary embedded within it as a file
named ‘IntelUpdate.exe’ to the startup directory on disk. This allows the binary to
execute when Windows is up and running.
This is the only proprietary component amongst the ones we inspected, which was
mostly written from scratch and makes only slight use of code from a Vector-EDK
application named ‘fsbg’. It conducts the following actions to drop the intended file to
disk:

Bootstraps pointers for the SystemTable, BootServices and RuntimeServices
global structures.
Tries to get a handle to the currently loaded image by invoking the
HandleProtocol method with the EFI_LOADED_IMAGE_PROTOCOL_GUID
argument.
If the handle to the current image is obtained, the module attempts to find the root
drive in which Windows is installed by enumerating all drives and checking that
the ‘\Windows\System32’ directory exists on them. A global
EFI_FILE_PROTOCOL object that corresponds to the drive will be created at this
point and referenced to open any further directories or files in this drive.
If the root drive is found in the previous stage, the module looks for a marker file
named ‘setupinf.log’ under the Windows directory and proceeds only if it doesn’t
exist. In the absence of this file, it is created.
If the creation of ‘setupinf.log’ succeeds, the module goes on to check if the
‘Users’ directory exists under the same drive.
If the ‘Users’ directory exists, it writes the ‘IntelUpdate.exe’ file (embedded in the
UEFI application’s binary) under the ‘ProgramData\Microsoft\Windows\Start
Menu\Programs\Startup’ directory in the root drive.

Code from ‘SmmAccessSub’ used to write the embedded ‘IntelUpdate.exe’ binary to
the Windows Startup directory

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/01142051/sl_MosaicRegressor_03.png

6/17

Unfortunately, we were not able to determine the exact infection vector that allowed the
attackers to overwrite the original UEFI firmware. Our detection logs show that the firmware
itself was found to be malicious, but no suspicious events preceded it. Due to this, we can
only speculate how the infection could have happened.

One option is through physical access to the victim’s machine. This could be partially based
on Hacking Team’s leaked material, according to which the installation of firmware infected
with VectorEDK requires booting the target machine from a USB key. Such a USB would
contain a special update utility that can be generated with a designated builder provided by
the company. We found a Q-flash update utility in our inspected firmware, which could have
been used for such a purpose as well.

Furthermore, the leaks reveal that the UEFI infection capability (which is referred to by
Hacking Team as ‘persistent installation’) was tested on ASUS X550C laptops. These make
use of UEFI firmware by AMI which is very similar to the one we inspected. For this reason
we can assume that Hacking Team’s method of patching the firmware would work in our
case as well.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/01142215/sl_MosaicRegressor_04.png

7/17

Excerpt from a Hacking Team manual for deployment of infected UEFI firmware, also
known as ‘persistent installation’

Of course, we cannot exclude other possibilities whereby rogue firmware was pushed
remotely, perhaps through a compromised update mechanism. Such a scenario would
typically require exploiting vulnerabilities in the BIOS update authentication process. While
this could be the case, we don’t have any evidence to support it.

The Bigger Picture: Enter MosaicRegressor Framework

While Hacking Team’s original bootkit was used to write one of the company’s backdoors to
disk, known as ‘Soldier’, ‘Scout’ or ‘Elite’, the UEFI implant we investigated deployed a new
piece of malware that we haven’t seen thus far. We decided to look for similar samples that
share strings and implementation traits with the dropped binary. Consequently, the samples
that we found suggested that the dropped malware was only one variant derived from a
wider framework that we named MosaicRegressor.

MosaicRegressor is a multi-stage and modular framework aimed at espionage and data
gathering. It consists of downloaders, and occasionally multiple intermediate loaders, that
are intended to fetch and execute payload on victim machines. The fact that the framework
consists of multiple modules assists the attackers to conceal the wider framework from
analysis, and deploy components to target machines only on demand. Indeed, we were able
to obtain only a handful of payload components during our investigation.

The downloader components of MosaicRegressor are composed of common business logic,
whereby the implants contact a C&C, download further DLLs from it and then load and
invoke specific export functions from them. The execution of the downloaded modules
usually results in output that can be in turn issued back to the C&C.

Having said that, the various downloaders we observed made use of different
communication mechanisms when contacting their C&Cs:

CURL library (HTTP/HTTPS)
BITS transfer interface
WinHTTP API
POP3S/SMTPS/IMAPS, payloads transferred in e-mail messages

The last variant in the list is distinct for its use of e-mail boxes to host the requested payload.
The payload intended to run by this implant can also generate an output upon invocation,
which can be later forwarded to a ‘feedback’ mail address, where it will likely be collected by
the attackers.

The mail boxes used for this purpose reside on the ‘mail.ru’ domain, and are accessed using
credentials that are hard-coded in the malware’s binary. To fetch the requested file from the
target inbox, MailReg enters an infinite loop where it tries to connect to the “pop.mail.ru”

8/17

server every 20 minutes, and makes use of the first pair of credentials that allow a successful
connection. The e-mails used for login (without their passwords) and corresponding
feedback mail are specified in the table below:

Login mail Feedback mail

thtgoolnc@mail.ru thgetmmun@mail.ru

thbububugyhb85@mail.ru thyhujubnmtt67@mail.ru

The downloaders can also be split in two distinct types, the “plain” one just fetching the
payload, and the “extended” version that also collects system information:

Structure of the log file written by BitsRegEx, strings marked in red are the original
fields that appear in that file

We were able to obtain only one variant of the subsequent stage, that installs in the autorun
registry values and acts as another loader for the components that are supposed to be
fetched by the initial downloader. These components are also just intermediate loaders for
the next stage DLLs. Ultimately, there is no concrete business logic in the persistent
components, as it is provided by the C&C server in a form of DLL files, most of them
temporary.

We have observed one such library, “load.rem“, that is a basic document stealer, fetching
files from the “Recent Documents” directory and archiving them with a password, likely as a
preliminary step before exfiltrating the result to the C&C by another component.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/01142407/sl_MosaicRegressor_05.png

9/17

The following figure describes the full flow and connection between the components that we
know about. The colored elements are the components that we obtained and gray ones are
the ones we didn’t:

Flow from BitsRegEx to execution of intermediate loaders and final payload

Who were the Targets?

According to our telemetry, there were several dozen victims who received components from
the MosaicRegressor framework between 2017 and 2019. These victims included diplomatic
entities and NGOs in Africa, Asia and Europe. Only two of them were also infected with the
UEFI bootkit in 2019, predating the deployment of the BitsReg component.

Based on the affiliation of the discovered victims, we could determine that all had some
connection to the DPRK, be it non-profit activity related to the country or actual presence
within it. This common theme can be reinforced through one of the infection vectors used to
deliver the malware to some of the victims, which was SFX archives pretending to be
documents discussing various subjects related to North Korea. Those were bundled with
both an actual document and MosaicRegressor variants, having both executed when the
archive is opened. Examples for the lure documents can be seen below.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/01142517/sl_MosaicRegressor_06.png

10/17

Examples of lure documents bundled to malicious SFX archives sent to
MosaicRegressor victims, discussing DPRK related topics

Who is behind the attack?

When analyzing MosaicRegressor’s variants, we noticed several interesting artefacts that
provided us with clues on the identity of the actor behind the framework. As far as we can
tell, the attacks were conducted by a Chinese-speaking actor, who may have previously used
the Winnti backdoor. We found the following evidence to support this:

We spotted many strings used in the system information log generated by the
BitsRegEx variant that contain the character sequence ‘0xA3, 0xBA’. This is an invalid
sequence for a UTF8 string and the LATIN1 encoding translates these symbols to a
pound sign followed by a “masculine ordinal indicator” (“£º”). An attempt to iterate over
all available iconv symbol tables, trying to convert the sequence to UTF-8, produces
possible candidates that give a more meaningful interpretation. Given the context of the
string preceding the symbol and line feed symbols following it, the best match is the
“FULL-WIDTH COLON” Unicode character translated from either the Chinese or
Korean code pages (i.e. CP936 and CP949).

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/01142633/sl_MosaicRegressor_07.png

11/17

Figure: The BitsRegEx system information log making use of the character sequence 0xA3,
0xBA, likely used to represent a full-width colon, according to code pages CP936 and
CP949.

Another artefact that we found was a file resource found in CurlReg samples that
contained a language identifier set to 2052 (“zh-CN”)

Chinese language artefact in the resource section of a CurlReg sample

We detected an OLE2 object taken out of a document armed with the CVE-2018-0802
vulnerability, which was produced by the so-called ‘Royal Road’ / ‘8.t’ document builder
and used to drop a CurlReg variant. To the best of our knowledge, this builder is
commonly used by Chinese-speaking threat actors.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/01142816/sl_MosaicRegressor_08.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/01142900/sl_MosaicRegressor_09.png

12/17

Excerpt from the OLE2 object found within a ‘Royal Road’ weaponized document,
delivering the CurlReg variant

A C&C address (103.82.52[.]18) which was found in one of MosaicRegressor’s variants
(MD5:3B58E122D9E17121416B146DAAB4DB9D) was observed in use by the ‘Winnti
umbrella and linked groups’, according to a publicly available report. Since this is the
only link between our findings and any of the groups using the Winnti backdoor, we
estimate with low confidence that it is indeed responsible for the attacks.

Conclusion

The attacks described in this blog post demonstrate the length an actor can go in order to
gain the highest level of persistence on a victim machine. It is highly uncommon to see
compromised UEFI firmware in the wild, usually due to the low visibility into attacks on
firmware, the advanced measures required to deploy it on a target’s SPI flash chip, and the
high stakes of burning sensitive toolset or assets when doing so.

With this in mind, we see that UEFI continues to be a point of interest to APT actors, while at
large being overlooked by security vendors. The combination of our technology and
understanding of the current and past campaigns leveraging infected firmware, helps us
monitor and report on future attacks against such targets.

The full details of this research, as well as future updates on the underlying threat actor, are
available to customers of the APT reporting service through our Threat Intelligence Portal.

IoCs

The followings IoC list is not complete. If you want more information about the APT
discussed here, a full IoC list and YARA rules are available to customers of Kaspersky
Threat Intelligence Reports. Contact: intelreports@kaspersky.com

UEFI Modules

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/10/01142954/sl_MosaicRegressor_10.png
https://401trg.com/burning-umbrella/
http://10.10.0.46/mailto:intelreports@kaspersky.com

13/17

F5B320F7E87CC6F9D02E28350BB87DE6 (SmmInterfaceBase)
0C136186858FD36080A7066657DE81F5 (SmmAccessSub)
91A473D3711C28C3C563284DFAFE926B (SmmReset)
DD8D3718197A10097CD72A94ED223238 (Ntfs)

RAR SFX droppers

0EFB785C75C3030C438698C77F6E960E
12B5FED367DB92475B071B6D622E44CD
3B3BC0A2772641D2FC2E7CBC6DDA33EC
3B58E122D9E17121416B146DAAB4DB9D
70DEF87D180616406E010051ED773749
7908B9935479081A6E0F681CCEF2FDD9
AE66ED2276336668E793B167B6950040
B23E1FE87AE049F46180091D643C0201
CFB072D1B50425FF162F02846ED263F9

Decoy documents

0D386EBBA1CCF1758A19FB0B25451AFE
233B300A58D5236C355AFD373DABC48B
449BE89F939F5F909734C0E74A0B9751
67CF741E627986E97293A8F38DE492A7
6E949601EBDD5D50707C0AF7D3F3C7A5
92F6C00DA977110200B5A3359F5E1462
A69205984849744C39CFB421D8E97B1F
D197648A3FB0D8FF6318DB922552E49E

BitsReg

B53880397D331C6FE3493A9EF81CD76E
AFC09DEB7B205EADAE4268F954444984 (64-bit)

BitsRegEx

DC14EE862DDA3BCC0D2445FDCB3EE5AE
88750B4A3C5E80FD82CF0DD534903FC0
C63D3C25ABD49EE131004E6401AF856C
D273CD2B96E78DEF437D9C1E37155E00
72C514C0B96E3A31F6F1A85D8F28403C

CurlReg

14/17

9E182D30B070BB14A8922CFF4837B94D
61B4E0B1F14D93D7B176981964388291
3D2835C35BA789BD86620F98CBFBF08B

CurlRegEx

328AD6468F6EDB80B3ABF97AC39A0721
7B213A6CE7AB30A62E84D81D455B4DEA

MailReg

E2F4914E38BB632E975CFF14C39D8DCD

WinHTTP Based Downloaders

08ECD8068617C86D7E3A3E810B106DCE
1732357D3A0081A87D56EE1AE8B4D205
74DB88B890054259D2F16FF22C79144D
7C3C4C4E7273C10DBBAB628F6B2336D8

BitsReg Payload (FileA.z)

89527F932188BD73572E2974F4344D46

2nd Stage Loaders

36B51D2C0D8F48A7DC834F4B9E477238 (mapisp.dll)
1C5377A54CBAA1B86279F63EE226B1DF (cryptui.sep)
9F13636D5861066835ED5A79819AAC28 (cryptui.sep)

3rd Stage Payload

FA0A874926453E452E3B6CED045D2206 (load.rem)

File paths

%APPDATA%\Microsoft\Credentials\MSI36C2.dat
%APPDATA%\Microsoft\Internet Explorer\%Computername%.dat
%APPDATA%\Microsoft\Internet Explorer\FileA.dll
%APPDATA%\Microsoft\Internet Explorer\FileB.dll
%APPDATA%\Microsoft\Internet Explorer\FileC.dll
%APPDATA%\Microsoft\Internet Explorer\FileD.dll
%APPDATA%\Microsoft\Internet Explorer\FileOutA.dat
%APPDATA%\Microsoft\Network\DFileA.dll
%APPDATA%\Microsoft\Network\DFileC.dll
%APPDATA%\Microsoft\Network\DFileD.dll

15/17

%APPDATA%\Microsoft\Network\subst.sep
%APPDATA%\Microsoft\WebA.dll
%APPDATA%\Microsoft\WebB.dll
%APPDATA%\Microsoft\WebC.dll
%APPDATA%\Microsoft\Windows\LnkClass.dat
%APPDATA%\Microsoft\Windows\SendTo\cryptui.sep
%APPDATA%\Microsoft\Windows\SendTo\load.dll
%APPDATA%\Microsoft\Windows\load.rem
%APPDATA%\Microsoft\Windows\mapisp.dll
%APPDATA%\Microsoft\exitUI.rs
%APPDATA%\Microsoft\sppsvc.tbl
%APPDATA%\Microsoft\subst.tbl
%APPDATA%\newplgs.dll
%APPDATA%\rfvtgb.dll
%APPDATA%\sdfcvb.dll
%APPDATA%\msreg.dll
%APPDATA\Microsoft\dfsadu.dll
%COMMON_APPDATA%\Microsoft\Windows\user.rem
%TEMP%\BeFileA.dll
%TEMP%\BeFileC.dll
%TEMP%\RepairA.dll
%TEMP%\RepairB.dll
%TEMP%\RepairC.dll
%TEMP%\RepairD.dll
%TEMP%\wrtreg_32.dll
%TEMP%\wrtreg_64.dll
%appdata%\dwhost.exe
%appdata%\msreg.exe
%appdata%\return.exe
%appdata%\winword.exe

Domains and IPs

103.195.150[.]106
103.229.1[.]26
103.243.24[.]171
103.243.26[.]211
103.30.40[.]116
103.30.40[.]39
103.39.109[.]239
103.39.109[.]252
103.39.110[.]193
103.56.115[.]69

16/17

103.82.52[.]18
117.18.4[.]6
144.48.241[.]167
144.48.241[.]32
150.129.81[.]21
43.252.228[.]179
43.252.228[.]252
43.252.228[.]75
43.252.228[.]84
43.252.230[.]180
menjitghyukl.myfirewall[.]org

Additional Suspected C&Cs

43.252.230[.]173
185.216.117[.]91
103.215.82[.]161
103.96.72[.]148
122.10.82[.]30

Mutexes

FindFirstFile Message Bi
set instance state
foregrounduu state
single UI
Office Module
process attach Module

Firmware
Hacking Team
Malware Descriptions
Malware Technologies
Targeted attacks
UEFI

Authors

 Mark Lechtik

 Igor Kuznetsov

https://securelist.com/tag/firmware/
https://securelist.com/tag/hacking-team/
https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/tag/uefi/
https://securelist.com/author/marklechtik/
https://securelist.com/author/igorsoumenkov/

17/17

 Yury Parshin

MosaicRegressor: Lurking in the Shadows of UEFI

Your email address will not be published. Required fields are marked *

https://securelist.com/author/yuriparshin/

