
1/26

September 25, 2020

The Fresh Smell of ransomed coffee
decoded.avast.io/martinhron/the-fresh-smell-of-ransomed-coffee/

by Martin HronSeptember 25, 202028 min read

We turned a coffee maker into a dangerous machine asking for ransom by modifying the
maker’s firmware. While we could, could someone else do it too? As you might expect, the
answer is: Yes. Follow us on a journey where we show you that firmware is the new
software.

Firmware is the new software

Some research is so fun that it confirms why I do this work. I was asked to prove a myth,
call it a suspicion, that the threat to IoT devices is not just to access them via a weak router
or exposure to the internet, but that an IoT device itself is vulnerable and can be easily
owned without owning the network or the router. I also bet that I could make that threat
persist and present a true danger to any user. We often say that your home network,
thought of as a chain of trust, is only as strong as its weakest link, but what if the same
were true at the device level? What would that mean?

Let’s say you have an IoT device that is well protected with functions that can be accessed
through a well-defined API; even if you can control the device through the API, you probably
can’t do too much harm. Firmware, the programming inside the device has logical
constraints that don’t allow you, for example, to close garage doors while someone is in the
way of them or overheat a device so that it combusts.

https://decoded.avast.io/martinhron/the-fresh-smell-of-ransomed-coffee/
https://decoded.avast.io/author/martinhron/

2/26

We used to trust that hardware, such as a common kitchen appliance, could be trusted and
could not be easily altered without physically dismounting the device. But with today’s
“smart” appliances, this is no longer the case.

My colleagues often hear me say that “firmware is a new software.” And that software is
very often flawed. We see it everywhere. CPU flaws, and cryptographic chips generating
weak keys that can be easily broken. The weakened state of IoT security is due in large
part to the fact that, nowadays, it is more convenient and cheap to place a processor inside
a device which controls and orchestrates all hardware parts, motors, sensors, heating
elements, etc. based on a short program called firmware. This solution is not only cheap,
but has also one important property – it can be updated

Back in the day, if there was a so-called design flaw in a piece of hardware, the rigid design
(often hardwired) meant the vendor would need to replace the whole component or logic
board or even replace the entire device. Manufacturers would have to change the
manufacturing process and at potentially great financial losses. In the era of firmware, this
can be easily mitigated just by issuing a firmware update.

The process of updating firmware can vary greatly, from connecting to the special device
using a special tool (which still requires the vendor’s physical interaction) to the more and
more popular way of OTA (over the air) updates. In this case, a vendor doesn’t have to be
physically present and the whole process is done either automatically over the internet or
semi-automatically after a user’s notification and approval of the update.

Making your first geeky coffee

So let’s see what we have. We have a coffee maker that allows you to make coffee the old
fashioned way by pressing a few buttons or via a mobile phone or tablet using an app. The
maker operates with Wi-Fi and when unboxed you have to connect it to your network
through a companion app on your mobile phone. When turned on for the first time, the
coffee maker works in a local mode and it creates its own Wi-Fi network that the hopeful
coffee drinker first connects to in order to set up the device.

It’s worth to mention that this coffee maker is no longer supported by the vendor as they
moved to a more secure platform in 2017 and technology because of all the flaws illustrated
in this research. But this also shows a general problem we have with abandoned IoT
devices.

When we downloaded the companion app, we saw that it allows you to create a network of
any devices of this particular vendor and connects these devices to the home network and
then allows you to control all the functions of your coffee maker or smart kettle. It also
allows you to check the firmware version of the device and update it if needed.

3/26

The protocol that this device speaks has already been documented on the internet by
several other researchers. As expected, it’s a simple binary protocol with hardly any
encryption, authorization or authentication. Communication with machines takes place on
TCP port 2081 . The format of the command is very simple:

In response (if there is a response) the coffee maker sends back:

response_type differs based on the command, but the general rule is: If the response
contains data response_type = command + 1 , if it’s just a status then
response_type=3 and then there is only one data byte which contains resulting status,

where 1 means success. The complete list of commands is in the GitHub repository.

 So just for illustration, by issuing this command:

making a nice cup of coffee with

“default” settings
You’ll make yourself a nice cup/cups of coffee based on the default settings of the coffee
maker. As you can see, there is no security, so anyone who has access to the network and
is able to reach the IP address of the coffee maker can control it. What is more interesting,
is that all these commands are also available through that default opened Wi-Fi network
when the device is not joined to a home network yet.

Update the future

Let’s return to our main goal of hijacking the coffee maker for nefarious purposes. How
secure is the updating process? Can we break into it? Can we even change the firmware to
do something else than was originally intended? Can we turn the device into a physically
dangerous device? Can we do it remotely? As I said in the beginning, the weakest link
always compromises the whole system. Either it’s a network or a device. The goal is
answering all the above questions and prove that IoT devices could be also compromised
at the firmware level.

https://github.com/avast/ioc/tree/master/SmarterCoffee

4/26

To start, we wanted to learn how the update process works. We have several options to do
this, but we already have a recipe for this based on similar past research we have done.
The general rule is to make it as simple as possible; here is our to-do list when trying to
reverse the update process of a piece of firmware.

1. Get it (the file with the firmware)
2. Unpack it (if it is packed/encrypted)
3. Reverse engineer it (translate those zeroes and ones into meaningful code)
4. Modify it (add the malicious content)
5. Upload it (and push it back to the device)

It’s simple right?

Finding the firmware

First, we need to get the firmware somehow, and again there are several options. Let’s stick
to the rule, the simplest option first:

1. Google it – as obvious as it seems, sometimes security researchers omit this step
which could save them a lot of work. Firmware is often available on the internet to be
downloaded.

2. Capture and analyze network traffic – if the protocol is unencrypted the easiest way is
to just capture the network traffic, in that case, we have three more options where to
look

traffic between the device and the internet
traffic between device and companion app, if there is any
traffic between the companion app and the internet

3. Analyze and reverse engineer the companion app. Before we dive deeply into the
device, it’s advisable to first peek into the device’s companion app, it’s usually the
easiest solution for grabbing the communication protocol and commands. No luck with
any of the above? It’s time to dismount the device, trace the board to identify all the
components, get datasheets to find debugging ports, and possibly dump the firmware
directly from the chip. This is really an adventure in hardware and not for everyone.

Life is not so simple, and neither is reverse engineering IoT devices. It turned out that we
had to use a combination of all the aforementioned techniques. First, we googled it, and as
the commands have already been documented, we found a command that says “update
the firmware.” But the command itself (its parameters and format) had not been
documented. So by issuing:

5/26

this simple (two bytes) command

switches coffee maker into update mode
the coffee maker goes into an update mode (on the newer firmware you have to push a
button to actually start the update, but this is not the case with older versions !)

Hmm nice, but nothing happens. By analyzing network traffic, we concluded that there is
nothing to analyze, as there is no traffic coming out of the coffee maker at this stage. So we
tried the Android companion app.

6/26

Android application for smart coffee maker, right picture shows an update screen
You can see the update button is grayed out, so obviously, the firmware is up-to-date and
there is no easy option to push the firmware update to be able to see what’s in the network
traffic. What’s interesting here is what’s missing. There was no communication to the
internet neither from the coffee maker nor from the app. So how is it possible that the app
knows that the coffee maker has the latest firmware? The only packets of data that went
through were those between the machine and app when the app had been asking the
machine for the version of the firmware.

Typical traffic analysis of IoT with companion app: we are interested in traffic between app

7/26

and internet and app and device.
This is strange, and it seemed to tell us that the firmware is probably not on the internet and
must be part of the app. So we opened the .apk file as easy as a .zip file. What we found
there, proved our assumption.

Files inside the apk: You can see firmware for both products are contained in the two files
with suffix .bin
The firmware is part of the Android app and it also means that new versions of the firmware
always come with new versions of the app. This makes perfect sense if you think about it
for a second. The new firmware usually adds new functionality, which has to be reflected
somehow inside the user interface of the app, and it allows us to find a file containing the
firmware without even touching the device. That’s nice and not very common.

Reverse engineering

In the next step of my research we try to figure out what the file contains. The first thing any
reverse engineer would do would be to just eyeball the file and see what it contains. What
we saw there was a bunch of strings that actually made sense. From this, we could deduce
there is no encryption and the firmware is probably a “plaintext” image that is uploaded
directly into the FLASH memory of the coffee maker.

8/26

Content of the file tells us that there is no encryption involved and also that there is a
probably extra WiFi modem module
To be able to understand what the firmware does we had to decode the binary into an
assembly, that means we needed to know the processor or architecture this firmware is
targeting.

We can guess or we can experiment. Or we could dismount the device to get information
about the hardware the old-fashioned way. So after unscrewing a few screws and taking off
a few plastic covers, we finally got our hands on a circuit board. This is what it looks like:

9/26

10/26

coffee maker and its control board
We can immediately see, there is one component we are already very familiar with. The
ESP8266 module. This is a very common chip that provides Wi-Fi capabilities and is

widely used in many devices by manufacturers as a Wi-Fi modem or even as the main CPU
of the device. That’s not the case this time. We identified other chips that seemed important
and came to a different conclusion.

11/26

1 – ESP8266 with AT modem firmware, 2 – STM32F05106 ARM Cortex M0 – main CPU
that glues everything together, 3 – I2C EEPROM with configuration, 4 – debug ports and
programming interface
The main CPU in this case, and the real heart of the whole coffee maker, is an ARM
Cortex M0 processor that controls all the connected gadgets (coffee grinder, coffee flap,
water level sensor, hotbed heater, main heater, display, buttons and “missing carafe”
sensor). To make it easier to understand, we came up with the block diagram of the whole
maker:

12/26

A block diagram of coffee machine’s main components
We can see that the ESP8266 is only used as a WiFi modem that provides WiFi
capabilities to the main CPU (this could sound funny as the ESP8266 is many times more
powerful and has a much more memory than the main CPU, but it’s true). Anyway, we have
what we came for. Now that we know the exact type of CPU, we can download the data
sheet and extract some basic information that will help us figure out where to begin with
disassembly.

13/26

basic specs as can be found on STMicroelectronics web site
We know that this CPU is rudimentary and resource-limited enough that there won’t be an
operating system which usually makes RE easier, as there is not much code to go through.
In this case, we used IDA (interactive disassembler) and after some trial and error attempts,
we loaded the binary onto the starting address 0x08004000 . Normally, the CPU starts it’s
execution from a 0x08000000 address, but later we found out that at the beginning of the
address space there is a second custom bootloader (a piece of code that is there to allow
updates of the rest of the code on chip) that takes care of the upgrade process and is a
always running as a safe place in the case something goes wrong during the update
process. When you find yourself in the unfamiliar land of unknown firmware, you usually get
something like this in IDA (that’s the tool we use a lot in our threat labs to reverse engineer
malware and unknown code generally):

14/26

IDA environment displaying functions and strings views
We see a number of unnamed routines and a list of strings. Now, the real work begins. You
have to find which routine does what and slowly piece together how the whole thing works.
It’s a matter of preference, but I usually start with the strings. From a string you can usually
deduce what functions use the string and based on that reference, you can usually uncover
what the function does. It also helps to identify the most common and most referenced
functions first. Specifically in the case of IoT, a good clue could be also to identify memory
mapped I/O pins, so when you see reference to such memory, you know that function
touches some HW component attached. Let’s skip tedious parts of analysis and let us show
you a few picks.

15/26

Using architecture

knowledge to understand code: From address seen we deduced that this must be function
accessing missing carafe switch, thus function being called is generic function for reading
pin and function calling will be part of ‘brew’ command
Although we didn’t reverse all the functions, we got most of the important ones. We also
discovered the global variables that store the state of buttons and received data over Wi-Fi,
as well as the routines that control the display and all the gadgets. We also found the
function for allocating and freeing memory, beeping, delay, etc. We found the main loop of a
program that executes all the subfunctions as well as the main command routine – that is
the function which based on the received packet over the network performs the command.
This allowed us to create a list of all the remote commands that the coffee maker is able to
perform and match them with previous research and even extend it.

16/26

By cross referencing function calls and addresses we are slowly uncovering what each
function does
After reversing the entire firmware, we knew exactly where every peripheral connects, how
to control it, and all the commands that the coffee maker is able to perform. The most
interesting was the firmware upgrade routine itself. After a closer look into the function that
handles the command that induced the “update” screen, it turned out that the coffee maker
notes something into the eeprom memory and performs the reboot. So now it was clear that
the update process is handled by the bootloader which is not a part of a firmware package.
Also when the “update” message is on the screen, the name of the Wi-Fi changes, from
“Smarter Coffee:xx” where xx is the same as the lowest byte of the MAC address of

the device. So obviously even if your coffee maker is connected to your home network
when it comes to updating, it’s always done over the Wi-Fi in “Access Point” mode.

17/26

spotting main function that processes all commands based on appearance of the call graph

close-up of cluster of WiFi related functions
 When we tried to reverse the update protocol we had a few different options. Since we

knew what processor was inside, we could try to dump the whole firmware (including
bootloader) out of the chip and reverse engineer the bootloader. We went with a more

18/26

simple approach and decided to reverse engineer the Android app and find the update part
as it is usually easier to read decompiled Java code than CPU assembly language. It took
us a while, but we identified and documented the whole process:

process of an update obtained by reversing the apk file
What is so surprising here is that the update procedure doesn’t use any encryption or
signature of the firmware. EVERYTHING is transmitted in PLAINTEXT over an
UNSECURED WiFi connection, the only check is CRC at the end.

First update and modification

Now we have all the information we need to try our first update. Using Python we
implemented a simple uploader, which works in two steps. First, it tries to find the coffee
maker’s Wi-Fi and then connects to it (by default, the coffee maker is always reachable on
192.168.4.1 port 2081). By sending the “start update command”, the coffee maker

switches itself into the update mode.

19/26

this simple (two bytes) command

switches coffee maker into update mode
The script waits for the Wi-Fi to change from “Smarter Coffee:xx” to “Smarter
Coffee Update:xx” . Once that happens, it connects again to the same address and
sends new firmware using the aforementioned procedure. For starters, we just sent a
slightly updated version of the firmware, which instead of displaying “missing carafe”
displayed this:

So the whole procedure of replacing the firmware takes approx. 15-25 seconds and is
completely automatic.

Everything is an image here

Interestingly, there is no font or textual output for the display, everything you see on screen
is stored in the firmware as an image. So, there are, for example, images for the number of
cups (1-12). The images are black and white and the encoding is pretty simple, as you can
see in the following diagram:

20/26

black & white image encoding

Creating modified firmware

Now we have everything we need to create our own modified firmware. Originally, we
wanted to prove the fact that this device could mine cryptocurrency, considering the CPU
and architecture it is certainly doable, but at a speed of 8MHz it doesn’t make any sense as
the produced value of such a miner would be negligible.

We decided to turn the coffee maker into a ransomware machine where a certain trigger
initiates the ransom message. It looks completely innocent and operates normally until the
trigger is hit by an attacker making it even more surprising.

To do so, We hijacked one of the commands that originally served to connect the maker to
the network so that when a user tries to connect the machine to home network a user can
trigger the ransom behavior themself unintentionally.

We used the unused memory space at the very end of the firmware to create the malicious
code. By using the ARM assembler we created ransomware that when triggered renders
the coffee maker unusable and asks for ransom, while at the same time turning on the
hotbed, water dispensing heating element, permanently and spinning up the grinder,
forever, displaying the ransom message and beeping. We thought this would be enough to
freak any user out and make it a very stressful experience. The only thing the user can do
at that point is unplug the coffee maker from the power socket.

21/26

snippet of “malicious”

code: this is the part that displays ransom on the display
Here you can see it in action:

Plan(n/t)ing attack vectors

22/26

So now that we proved it’s possible to change the coffee maker’s firmware without touching
it, let’s have a look at how you can get your hands on the coffee maker as an attacker. What
possibilities do we have and can we overcome the “security” measure of the newer
firmware version, where the device owner is required to press the start button before the
update happens.

Attack vector 1: Passer-by.

In this approach we need physical access to the device to initiate the update.

+ Easy to perform
 - Need physical proximity, the coffee maker must be in an unconfigured state (not

connected to a home network)

This attack option probably has the least impact. To perform it, you need access to the
device or need to at least be in range of its Wi-Fi signal. If the device is already connected
to the home network, you can use a deauthentication attack as the device is also vulnerable
to “default-fallback to Wi-fi Access Point mode”, when it’s unable to connect to a pre-set
WiFi network. Let’s look at the scheme of this attack:

The attacker issues an “update start” command and then just after that, the Wi-Fi changes
its name to “Smarter Coffee Update:xx” . The attacker then starts sending modified firmware
to the machine.

Attack vector 2a: Breaking the perimeter.

In this scenario we use the network to get to the coffee maker.

+ Can be done remotely
- Need to break into the network first, and need a Wi-Fi enabled device/router inside the

network, if the coffee machine is running on a newer firmware version, the user needs to
confirm the update by pressing the button.

This is a very common scenario where an attacker first breaks into the home network. The
crucial part of this attack is to find a device via which you can control the Wi-Fi. An ideal
candidate is, of course, a Wi-Fi router.

As the coffee maker always turns itself into a Wi-Fi access point while upgrading its
firmware, you need a device inside the network you can use to connect to it. This is usually
a pretty common function of any router, so for a short time, you can easily reconfigure the
router to be a client, instead of a Wi-Fi access point. Because the update process is so
short, the outage should be hardly noticeable. Some routers are even capable of being a
client and access point at the same time using a single radio.

https://en.wikipedia.org/wiki/Wi-Fi_deauthentication_attack

23/26

Attack vector 2b: Breaking the perimeter.

This attack is a variant of the previous attack vector, the only difference is that it fools the
user into pressing the update button without any concerns.

+ Reach, overcome the user interaction problem
- Requires more planning and access to the network, not an instant effect

The novelty here is that in the exact moment when the app asks for the version of the
firmware, the attacking script (running on the router) just spoofs the response and sends
back a response indicating the coffee maker firmware is out-of-date, which leads to a
prompt in the app that it needs to be updated. The rest is easy – you can now replace the
firmware as it flows from the app to the coffee maker.

This attack could be also performed in a “passer-by” manner, when you have proximity to
the coffee maker and it’s not joined to a network.

Attack vector 3: Social engineering. An android app as a mediator.

In this attack scenario, we trick the user into downloading a fake app to control the coffee
maker.

+ No interaction with the network or protocol needed
 - Social engineering, outcome is not guaranteed

This is a classic attack scenario. You just need to replace the firmware inside the coffee
makers official companion Android app and re-sign it with a stolen certificate and try to push
it into the Google Play Store or any other third party app store. You can use any social
engineering technique to push the user into downloading the fake app, as there is no
signature in the firmware, the coffee maker gladly accepts it. Basically, any form of creating
a fake version of the app and pushing the user to install it works.

Found vulnerabilities and issues

During our analysis, we found several weaknesses and one critical vulnerability. As you can
already imagine, the most serious vulnerability is the one that enables an attack to replace
the coffee maker’s firmware remotely.

There are differences between firmware versions, the oldest one didn’t need any user
interaction to be updated, whereas newer versions of the coffee maker’s firmware ask the
user to press the “start” button on the machine to begin the update. However, even if it
requires the user to press the button before the update, you can still use social engineering
attacks by repeatedly sending the start update packet, which will cause the user to see the
same prompt over and over, even when pressing “cancel”.

24/26

Because the update happens over an unencrypted network, you can also spoof the
firmware version and make the companion app believe the coffee maker actually needs to
update and then inject malicious code. In this case users will likely happily press update.

Another weakness is the possibility to permanently dissociate the device from the home Wi-
Fi network. Even if it is already connected to a secure Wi-Fi network you can disconnect the
machine from the network by using a deauthentication attack. Strangely enough, it will
make no attempt to reconnect, so it loses connection forever, or at least until someone
resets it. If you keep deauthing the device during its restart, it switches itself back into
“Access Point” mode with open Wi-Fi waiting for the attacker to connect.

The disclosure and fix

Even if we were to contact the vendor, we would likely get no response. According to their
website, this generation of coffee maker is no longer supported. So users should not expect
a fix.

Final thoughts

Are you still interested in a smart coffee maker after all this? As shown on the map below
(source: wigle) there are nearly 570 smart coffee makers from this vendor out there
that have not been set up. That means the smart functionalities are not being used by these
570 machines. However, the owners of these machines have unintentionally made it

easier to hack their devices, as each of these coffee makers makes itself an access point to
which anyone in range can connect and misuse.

Additionally, this case also demonstrates one of the most concerning issues with modern
IoT devices: “The lifespan of a typical fridge is 17 years, how long do you think
vendors will support software for its smart functionality?”. Sure, you can still use it
even if it’s not getting updates anymore, but with the pace of IoT explosion and bad attitude
to support, we are creating an army of abandoned vulnerable devices that can be misused
for nefarious purposes such as network breaches, data leaks, ransomware attack and
DDoS.

https://en.wikipedia.org/wiki/Wi-Fi_deauthentication_attack
https://wigle.net/

25/26

Unconfigured Smarter Coffee machines across the globe
As we said at the very beginning, in the security domain we used to consider software as an
untrusted part of the ecosystem, while considering the hardware as secure and trusted.
More and more often, we see how this trust is being broken. Unfortunately, many vendors
make firmware attacks more viable by just leaving security behind and making it wide open
to attackers. For cybercriminals this opens and the whole new world of attack surfaces to
abuse. It may not be that easy to write and replace firmware, but the advantages of
stealthiness and persistence you can achieve are just so tempting.

We live in a world where things talk to things, and where the number of smart things is
slowly outnumbering the number of computers. These devices, for the most part, have no
screen and can therefore mask malicious activities running in the background from their
owners.

IoCs, CVE + artifacts

CVE-2020-15501 Smarter Coffee Maker before 2nd generation allows firmware
replacement without authentication or authorization. User interaction is required to press a
button. NOTE: This vulnerability only affects products that are no longer
supported by the maintainer.

Distinct firmware images

26/26

SHA256

1eff6702b158b1554284f3ef6eb9d05748f43ba353d60954f21c6f20fd71e6ce

650a7bc7a55162988c77df34235c8e87eda9c8e2fcecd72b74c5f69e3edd088c

Github repository with firmware images, IDA datbase, uploader

Avast IoC repository

References to similar research:

Reversing the Smarter Coffee IoT Machine Protocol to Make Coffee Using the Terminal

https://www.pentestpartners.com/security-blog/another-unsmart-smarter-app/

github.com/Tristan79/iBrew(opens in a new tab)

https://www.pentestpartners.com/security-blog/hacking-a-wi-fi-coffee-machine-part-1/

Tagged asanalysis, cve, hardware, reversing, vulnerability

https://github.com/avast/ioc/tree/master/SmarterCoffee
https://t.co/ZwqZnYwiFk?amp=1
https://www.pentestpartners.com/security-blog/another-unsmart-smarter-app/
https://github.com/Tristan79/iBrew
https://www.pentestpartners.com/security-blog/hacking-a-wi-fi-coffee-machine-part-1/
https://decoded.avast.io/tag/analysis/
https://decoded.avast.io/tag/cve/
https://decoded.avast.io/tag/hardware/
https://decoded.avast.io/tag/reversing/
https://decoded.avast.io/tag/vulnerability/

