Looking for sophisticated malware in loT devices
SL

Authors

Expert Noushin Shabab

One of the motivations for this post is to encourage other researchers who are interested in
this topic to join in, to share ideas and knowledge and to help build more capabilities in order
to better protect our smart devices.

Research background

Smart watches, smart home devices and even smart cars — as more and more connected
devices join the loT ecosystem, the importance of ensuring their security becomes patently
obvious.

I's widely known that the smart devices which are now inseparable parts of our lives are not
very secure against cyberattacks. Malware targeting loT devices has been around for more

than a decade. Hydra, the first known router malware that operated automatically, appeared
in 2008 in the form of an open-source tool. Hydra was an open-source prototype of router

1/16

https://securelist.com/looking-for-sophisticated-malware-in-iot-devices/98530/
https://securelist.com/author/noushinshabab/

malware. Soon after Hydra, in-the-wild malware was also found targeting network devices.
Since then, different botnet families have emerged and become widespread, including
families such as Mirai, Hajime and Gafgyt.

Apart from the malware mentioned above, there are also vulnerabilities found in
communication protocols used in loT devices, such as Zigbee, which can be exploited by an

attacker to target a device and to propagate malware to other devices in a network, similar to

computer worms.

In this research, we are focusing on hunting low-level sophisticated attacks targeting loT
devices and, in particular, taking a closer look at the firmware of IoT devices to find backdoor
implants, modifications to the boot process and other malicious alterations to different parts
of the firmware.

Now, let’s talk about the structure of the firmware of an IoT device in order to get a better
understanding of the different components.

loT firmware structure

Regardless of the CPU architecture of an loT device, the boot process consists of the
following stages: the boot loader, the kernel and the file system (shown in the figure below).
When an loT device is switched on, the code from the onboard SoC (System on Chip) ROM
transfers control to the bootloader, the bootloader loads the kernel and kernel then mounts
the root file system.

The boot loader, the kernel and the file system also comprise the three main components of
typical loT firmware.

2/16

https://appleinsider.com/articles/20/02/05/philips-hue-smart-bulb-allows-hackers-to-attack-your-network

O o Boot Loader

IEI'_'IE Kernel modules

Root Filesystem

IoT boot process

There are a variety of CPU architectures used in loT devices. Therefore, being able to
analyze and understand the different components of firmware requires a good understanding
of these architectures and also their instruction set. The most common CPU architectures

3/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/23135119/sl_looking_for_sophisticated_malware_01.png

among loT devices are:

e ARM

e MIPS

e PowerPC
e SPARC

Possible attack scenarios

Understanding the firmware structure enables us to think about how an attacker might take
advantage of the various components when deploying a stealth attack that’s difficult to
detect.

The bootloader is the first component that takes control of the system. Therefore, targeting
the bootloader offers an attacker a perfect opportunity to carry out malicious tasks. It also
means that an attack can remain persistent after a reboot.

An attacker can also manipulate the kernel modules. The majority of loT devices use the
Linux kernel. As easy as it is for a developer to customize and choose whatever they need
from the Linux kernel, an attacker who manages to access and manipulate the device
firmware can also add or edit kernel modules.

Moving on to the file system, there are also a number of common file systems used in loT
devices. These file systems are usually easy to work with. An attacker can extract,
decompress and also mount the original file system from the firmware, add malicious
modules and compress it again using common utilities. For instance, SquashFS is a
compressed file system for Linux that is quite common among loT manufacturers. It's very
straightforward to mount or uncompress a SquashFS file system using the Linux utilities
“squashfs” and “unsquashfs”.

Challenges of this research

Obtaining firmware

There are different ways to obtain firmware. When deciding to investigate, sometimes you
want the acquired firmware to belong to the exact same device with the same specifications;
and you also want it to be deployed on the device through some specific means. For
example, you suspect that the network through which the firmware is updated has been
compromised and you consider the possibility of the firmware being manipulated in transition
between the vendor’s server and the device, hence you want to investigate the updated
firmware to validate its integrity. In another example scenario, you might have bought a
device from a third-party vendor and have doubts about the firmware’s authenticity.

4/16

There are also a large number of 0T devices where the manufacturers don’t implement any
ways to get access to the firmware, not even for an update. The device is released from the
manufacturer with firmware for its lifetime.

In such cases the surest way to obtain the exact firmware you are after, is to extract the
firmware from the device itself.

The main challenge here is that this process requires a certain domain-specific knowledge
and also specialist hardware/software experience of working with embedded systems. This
approach also lacks scalability if you want to find sophisticated attacks targeting IoT devices
in general.

Among the various ways of obtaining loT firmware, the easiest way is to download the
firmware from the device manufacturer’s website. However, not all manufacturers publish
their firmware on their website. In general, a large number of 10T devices can only be
updated through the device physical interface or via a specific software application (e.g.
mobile app) used to manage the device.

When downloading firmware from a vendor’s website, a common issue is that you might not
be able to find older versions of the firmware for your specific device model. Let’s also not
forget that in many cases the published firmware binaries are encrypted and can only be
decrypted through the older firmware modules installed on the device.

Understanding firmware

According to Wikipedia, “firmware is a specific class of computer software that provides the
low-level control for a device’s specific hardware. Firmware can either provide a standardized
operating environment for more complex device software (allowing more hardware-
independence), or, for less complex devices, act as the device’s complete operating system,
performing all control, monitoring and data manipulation functions.”

Even though the main components of firmware are almost always the same, there is no
standard architecture for firmware.

The main components of firmware are typically the bootloader, the kernel module and the file
system; but there are many other components that can be found in a firmware binary, such
as the device tree, the digital certificates, and other device specific resources and
components.

Once the firmware binary has been retrieved from the vendor’s website, we can then begin
analyzing it and taking it apart. Given the specialized nature of the firmware, its analysis is
very challenging and rather involved. To get some more details about these challenges and
how to tackle them, refer to the “loT firmware analysis” section.

Finding suspicious elements in firmware

5/16

After the components of the firmware have been extracted, you can start to look for
suspicious modules, code snippets or any sort of malicious modifications to the components.

An easy step to start with, is to scan the file system contents against a set of YARA rules
which can be based on known IoT malware or heuristic rules. You can also scan the
extracted file system contents with an antivirus scanner.

Something else you can do is look for the startup scripts inside the file system. These scripts
contain lists of modules that get loaded every time the system boots up. The address to a
malicious module might have been inserted in a script like this with malicious intent.

Here the Firmwalker tool can help with scanning an extracted file system for potentially
vulnerable files.

It will search through the extracted or mounted firmware file system for things of interest such

as:

* efc/shadow and etc/passwd

e |ist out the etc/ssl directory

e search for S5L related files such as .pem, .crt, etc. (can extract certificate serial number for
searching in Shodan)

+ search for configuration files

» look for script files

s search for other .bin files

¢ look for keywords such as admin, password, remote, etc.search for common web servers
used on loT devices

« search for common binaries such as ssh, tftp, dropbear, etc.

+ search for URLs, email addresses and |IP addresses

e Experimental support for making calls to the Shodan APl using the Shodan CLI

Firmwalker capabilities (https://craigsmith.net/firmwalker/)
Another place to investigate is the bootloader component, though this is more challenging.

There are a number of common bootloaders used in loT devices with U Boot being the most
common. U Boot is highly customizable, which makes it very difficult to determine whether
the compiled code has been manipulated or not. Finding malicious modifications becomes
even more complicated with uncommon or custom bootloaders.

6/16

https://github.com/craigz28/firmwalker
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21122331/sl_looking_for_sophisticated_malware_02.png
https://github.com/u-boot/u-boot

loT firmware analysis

There are a variety of open-source and closed-source tools that can help with firmware
analysis. The best approach is to use a combination of the tools and techniques suggested
by experienced firmware analysts.

Let’s begin with Binwalk, the most comprehensive firmware analysis tool. Binwalk scans the
firmware binary and looks for known patterns and signatures.

It has a large collection of signatures for various bootloaders and file systems used in loT
devices. It also has signatures for common encryption and compression algorithms along
with the respective routines for decompression and decoding.

Binwalk is also capable of extracting the components it finds in the firmware binary.

The following screenshot shows the output of a Binwalk scan on a sample firmware binary:

HEXADECIMAL DESCRIPTION

ox0 uImage header, header size: 64 bytes, header CRC: OxBCF6190, created:
2012-09-19 ©8:09:15, image size: B23597 bytes, Data Address: 0x80000000,
Entry Polnt: 0xB0248000, data CRC: Ox8E7D7CBE, 0S: Linux, CPU: MIPS, image
type: 0S Kernel Image, compression type: lzma, image name: "DIR_388NRUBS"

0x40 LZMA compressed data, properties: 0x5D, dictionary size: 8388608 bytes,
uncompressed size: 2496376 bytes

OxDOOOO Squashfs filesystem, little endian, non-standard signature, version 3.1,
size: 2789406 bytes, 632 inodes, blocksize: 65536 bytes, created: 2012-09-19
08:09:13

Binwalk scan output

In this screenshot, Binwalk has found and printed out the header, the bootloader and the
Linux kernel as well as the file system. There are also metadata details that have been
extracted from the headers and the components themselves, such as the type and size of
each component, CRC checksums, important addresses, CPU architecture, image name
and so on. Now you can go on and use Binwalk itself to extract the above-mentioned parts,
or manually calculate the sizes and extract the parts based on the start offset found by
Binwalk.

After extracting the components of the firmware, you can go on and extract, decompress or
even mount the file system and start investigating the file system content. You can also look
at the bootloader code in a disassembler, or debug it through a debugger.

However, doing firmware analysis is not always that straightforward. Firmware is so varied
and diverse that understanding its structure and extracting the components is usually quite
complicated.

Let’s take a close look at another sample firmware and try to understand its structure.

7/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21122439/sl_looking_for_sophisticated_malware_03.png

1. Binwalk firmware.bin

The Binwalk scan shows nothing in the result. This means that Binwalk could not find any
known signatures.

DECIMAL HEXADECIMAL DESCRIPTION

Binwalk scan output

We can see in this case that the simple Binwalk scan was not very helpful. However, be
aware that there are other tools and techniques we can use to learn more about the structure
of this firmware.

2. File firmware.bin

Let’s next try the Linux file utility on the firmware binary.

firmware.bin: Targa image data - Map 65536 x 65536 x O +96 - 3-bit alpha

File utility output

The file utility shows the file type as Targa image data. By looking at the beginning of the
binary file, and doing a Google search on the Targa image data signature, the result is
obviously a false positive.

First bytes of the firmware binary

This is because the first bytes of the firmware file, 0x01010000, match the Targa image data
signature. See the screenshot above.

3. Binwalk -E firmware.bin

Let’'s use another capability of Binwalk and check the entropy of the firmware binary.

8/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21122538/sl_looking_for_sophisticated_malware_04.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21122613/sl_looking_for_sophisticated_malware_05.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21122654/sl_looking_for_sophisticated_malware_06.png

Running Binwalk using the “-E” command option gives an entropy diagram for the firmware
file and some additional details such as the offset for falling and rising entropy.

DECIMAL HEXADECIMAL ENTROPY

0xe Falling entropy edge (0.346688)
OxD8oo Rising entropy edge (©.978339)

Entropy details

Entropy

=
j=1
[}
=
=
LL
0 100000 200000 300000 400000 500000
Miffcat
Entropy diagram

Entropy figures close to 1 indicate compression, while the lower entropy figures indicate
uncompressed and unencrypted areas. As can be seen from the screenshots above, the

offset 55296 (0xD800) is the beginning of the high entropy part.

There is also another tool that can be helpful in visualizing the binary. With the help of
binvis.io you can see the contents of the firmware file and its visualization in two side-by-side
panes. Different parts are shown in different colors based on their entropy. (binvis.io)

9/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21122735/sl_looking_for_sophisticated_malware_07.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21122814/sl_looking_for_sophisticated_malware_08.png

about changelog help

Visualization of the firmware created by binvis.io

4. Binwalk -A firmware.bin

1
110
120

1000130

01 60 01 60 60 06 00 00
00 03 00 00 e3 16 28 57
ff ff ff ff e 00 00 00
00 00 00 00 00 00 00 0O
00 00 00 00 00 @0 00 00
00 00 00 60 60 00 00 00
00 00 00 00 04 00 00 0O
04 60 00 60 62 00 00 0O
01 60 00 00 03 00 00 80
04 00 00 00 04 00 00 00
04 00 00 00 02 0O 00 0O
07 00 00 00 12 @@ 00 00
11 00 00 00 04 00 00 06
0c 00 00 00 43 53 00 ff
08 00 00 60 04 00 00 00
04 60 00 00 2c 00 00 0O
23 01 19 20 6b 00 00 00
Oc 00 00 00 04 0O 00 0O
10 00 00 00 43 75 73 74
ff ff ff ff 0e 00 00 00

firmware.bin +

60 00 00 00 00 00 80 00

ff ff ff ff 60 03 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 13 €9 d6 a8
cd ab 34 12 01 00 00 004.....
02 00 00 00 04 00 00 00
04 00 00 00 85 00 00 00
01 00 00 00 05 00 00 00

96 00 00 00 04 00 00 00

04 00 00 00 00 00 00 00

02 00 00 00 07 00 00 00
ff ff ff ff ff ff ff ff
01 00 00 00 03 00 00 00
0a 00 00 00 04 00 00 00
04 00 00 00 16 52 17 00
00 75 00 00 od 00 00 00

6f 6d e ff ff ff ff ff ...

10 00 00 00 43 75 73 74

byteclass range

0x00 0 - 553300 export
Low 540.3kb / 540.3kb

ascii

high

oxff

Binwalk can also scan the binary file for common executable opcode signatures.

HEXADECIMAL DESCRIPTION
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,

0x598
Ox5C0
@x5F8
0x624
0x648
Ox680
Ox698

First function prologues found in the file

function
function
function
function
function
function
function
function
function
function
function
function
function

prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue

10/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21122901/sl_looking_for_sophisticated_malware_09.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21122948/sl_looking_for_sophisticated_malware_10.png

@xC29C
OxC2C8
@xC4A4
@xCAD4
0xCE48
@xCES8
OxCEF4
@xCF10

@xCF14

OxCF8C
@xCFC4
exDo2e

instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,
instructions,

function
function
function
function
function
function
function
function
function
function
function
function

prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue
prologue

BxD120 instructions, function prologue
BxD14C instructions, function prologue
AxD6OO instructions, function prologue

Last function prologues found in the file

As we can see from the screenshot above, the result of the opcode signature check is
actually very helpful! First, we can see that the firmware belongs to an ARM device.

Second, if we consider the offsets of the first and last function prologue signatures, we get an
indication that these are the sections of the firmware binary that contain code.

From the screenshot, we can also see that the last function is found at the address 0xD600,
which is just 0x200 bytes before the part where the entropy goes up. From this, we can make
an educated guess that this offset is likely the end of the code of the bootloader and the
beginning of the compressed kernel modules.

5. Hexdump -C
hexdump -C firmware.bin | grep -C 4 -e “N*$”

Now that we know the rough boundaries of some of the components of the firmware file, we
can try to confirm these boundary offsets by looking at the actual contents of the firmware file
around these areas.

If we run the firmware file through a hexdump, and look for lines that contain only an asterisk
“*” we can locate the compiler-added padding for each of the firmware components.

POOOO3bO
POOOO3CcO
PEOAB3de

poooe440
DOOOO450
Doo0e460
poeoe470

11/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21123029/sl_looking_for_sophisticated_malware_11.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21123121/sl_looking_for_sophisticated_malware_12.png

Contents of the firmware binary

POAOOd500 i | .P..Codec: Calli]
POOOd510 e e |ng module entry |
pOEOd520 Ge e : He |point. A=EntryPo|
pOEOd530 Ge Ge e : |[intFn()

pEO6d540 HE 1 |Returned from ca|
pEO6d5508 Ge e |11 to entry poin|
PEOOd560 e ; be Ge |t. A=EntryPointF|
PEAOd578 6e e 1’] Code |
POOOd580 e |c: exiting..2...
pOO6d590

pHOOAd5a0

pOEOd5bo

pOEOd5cO

pee6d5de

POO6d5ed

pee6edsTe

POO6d60

pOO6d610

pOO6d620

pOOOd630

NO00d640

pOOOd650

NOO0d660

pEOAd690
pEOAd6an
POOAd6bO

pOOAdT710
pOEOd720
pOEOd730

Contents of other parts of the firmware binary

The output of the Hexdump utility, together with the previous findings, confirm the section of
the firmware binary containing ARM code. We previously suspected that this code belongs to
the bootloader.

6. Strings —radix=x firmware.bin

Next, let's extract the ASCII strings from the firmware together with their offsets.

12/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21123158/sl_looking_for_sophisticated_malware_13.png

Assert(a)

B8 Assert(gpBootromApiMapping)
Codec: entering

B Header CRC is bad. A=pHeader

8 AppletMain.cpp

8 Header version is bad. A=pHeader
Legacy header detected. A=pHeader

Codec: Calling module entry point. A=EntryPointFn().
Returned from call to entry point. A=EntryPointFn().
Codec: exiting

AppletMain.cpp

uBol

Z#D:
#EJ]

Last ASCII strings found in the firmware binary

Looking at the screenshot above, there are some strings related to the module entry point.
These strings can give us a good indication of the nature of the code involved.

We can see some other interesting strings from the beginning of the firmware binary in the
screenshot below. For example, the “MctlApplet.cpp” library name can be used to find other
binaries or packages from the same developers. Having other firmware images from the
same vendor helps to better understand the binary structure.

Another interesting string from the same screenshot is “Not Booting from softloader” which
can indicate the process state or perhaps the nature of this module.

Strings containing “Assert()” can suggest different information about the code. Using Asserts
is @ common practice in firmware development, as it helps the developer to debug and
troubleshoot the code during the development and production phase.

13/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21123245/sl_looking_for_sophisticated_malware_14.png

Custom

Custom

QCA75xx MAC SW v2.7 REV:02 C5 0044-Ex
FW-QCA7500-2.7.0.0044-Ex-02-C5-20190123:175216-Custom:Custom-2-1.5
(R"

aB@ez

0123456789ABCDEF

/1p@-

Assert!!!

Entering Mctl Applet.
MctlApplet.cpp

Exiting Mctl Applet.

#p@-

MCTL Version ©.9.3
MctlApplet.cpp

Not Booting from softloader
Assertin)

FastMath_inline.h
MctlApplet.cpp
DdrProperties.cpp
JedecDdr2Standard.cpp
JedecDdr3Standard.cpp
MemssDdrControllerControl Cheetah.cpp
MemssDdrPhyControl Cheetah.cpp
ProtectionUnitControl.cpp
SdramControllerHal Cheetah.cpp
SspControl.cpp

Assert(o)

Assert(0)

Assert(e)

Assert(e)

Assert(apThis)

Assert(o)

Assert(o)

Assert(o)

First ASCII strings found in the firmware binary

7. IDA -parm firmware.bin

We can see that we have already collected lots of valuable information from this firmware
binary that seemed quite incomprehensible at the beginning.

Let’'s now use IDA to inspect the code. As this binary is not an ELF file with standard headers
that show the ISA, we need to explicitly tell IDA to use the ARM instruction set to
disassemble the code.

14/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21123333/sl_looking_for_sophisticated_malware_15.png

Yy

FIZIE

loc_Ca30

MCR pl3, 0, R8,c7,cl4, O

MCR pls, 0, R8,e7,cl0, 4

MCR pl3, 0, R8,c7,c3, 0O

LDR R%, =0x115

ADR R3, aNvmloaderCalli ; "NvmLoader: Calling module entry point. '
STR R3, [SP,#0xC8+var_C8]

MOV R3, R7

MOwv RZ, R2

ADD R1, R2, #0x2D ; '-'

ADR RO, aAppletmainCpp ; "AppletMain.cpp”
EL sub_ C274

MOV RO, R4

BLX R7

ADR R2, aReturnedfFromCa ; "Returned from call to entry point. A=En"...
STR R3, [SP,#0xCe8+var_C8]

MoV R3, R7

MOV RZ, RZ

ADD R1, R2, #ox3g ; '&’

ADR RO, alAppletmainCpp ; "AppletMain.cpp”
BL sub_C274

Disassembly view of part of a function in IDA

The above screenshot from IDA shows how the strings found in the previous analysis steps
can be used to help find the call to the entry point of the kernel module.

8.dd

We can now go ahead and extract the part of the firmware binary which our analysis found to
be the bootloader module.

9. Qemu

After all the modules have been extracted from the firmware binary — the file system content,
the kernel modules and other components — we can then use Qemu to run the binaries, and
even emulate the files that were meant for a different architecture from our own machine,
and start interacting with them.

Conclusion

The number of l0T devices is getting bigger and bigger every day. From industrial control
systems, smart cities and cars to consumer-grade devices such as mobile phones,
networking devices, personal assistants, smart watches and a large variety of smart home
appliances.

loT devices are derived from embedded systems that have been around for many years. The
manufacture and development of software for embedded devices has always had different
priorities from those of general-purpose computer systems due to the different nature of
these devices. These priorities have been shaped by the limited and specific functions of the
devices themselves, the limited capabilities and capacities of the underlying hardware as

15/16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/09/21123415/sl_looking_for_sophisticated_malware_16.png

well as the inaccessibility of the developed code to subsequent alteration and modifications.
However, loT devices have significant differences to traditional embedded systems. Most loT
devices nowadays run on hardware that have similar capabilities to a general-purpose
computer system.

As loT devices become more prevalent, they are now accessing and controlling many
aspects of our lives and day-to-day interactions. loT devices can now potentially give
malicious actors unprecedented opportunities to do harm. This highlights the importance of
security in loT devices and also shows the relevance of research around this topic. The good
news is that there are many tools and techniques available to assist current and future
research in this field. Acquiring a good understanding of the architecture of 0T devices,
learning the language these devices speak and a good dose of determination and
perseverance are what it takes to enter this research field.

This post has been written primarily to motivate individuals who want to start diving into loT
security research. You can reach out to us regarding this research at
iot_firmware_research@kaspersky.com or via my twitter account, @Noushinshbb.

We'll be publishing more in the future! Stay tuned!

Firmware

Internet of Things
Linux

Malware

Authors

Expert Noushin Shabab

Looking for sophisticated malware in loT devices

Your email address will not be published. Required fields are marked *

16/16

https://securelist.com/tag/firmware/
https://securelist.com/tag/internet-of-things/
https://securelist.com/tag/linux/
https://securelist.com/tag/malware/
https://securelist.com/author/noushinshabab/

