Reverse Engineering Dridex and Automating IOC
Extraction

&

SECURE

ACCESS

BLOG

appgate

Dridex['! is a major banking trojan that appeared somewhere around 2011, continually
evolving ever since.

The APT (Advanced Persistence Threat) known as TA505"” is associated to Dridex, as well
as with other infamous malware such as TrickBot and Locky ransomware.

Once installed, Dridex can download additional files to provide more functionality to the
trojan. Simply put, there are four main components:

1/13

https://www.appgate.com/blog/reverse-engineering-dridex-and-automating-ioc-extraction

Infected Microsoft Office documents that downloads or drops
Dridex’s Loader

Downloader

Loader Responsible for downloading and installing the main module.

This is the main module, which contains most of Dridex’s
functionalities.

Additional files that provides more functionalities,
downloaded by the Loader.

In the last few days, our team detected recent Dridex samples through our live hunting
process and, after analyzing them, we’ve decided to publish an analysis of the main features
implemented by this threat that makes detection and analysis difficult.

Therefore, in this post, we will focus on the second layer (Loader), showing the technical
details regarding:

1. Unpacking;

2. Dynamic API Calls;

3. Encrypted Strings;

4. C2 Network Communication.

In addition, we are publishing a tool that statically extracts IOCs from the latest Dridex
binaries, as we believe that this can enable organizations to reduce analysis time spent
during incidents or prevent the malware family altogether.

1. Unpacking

Unpacking is an important step because Dridex doesn’t write the unpacked payload to disk,
instead, the custom packer loads it directly to memory and there it stays. First, to analyze
and extract the I0Cs, we must get the unpacked sample, and this is not a difficult task.

You can easily execute the packed sample and then run the amazing PE-sieve[3] tool, from
hasherezade, which will extract the payload from memory. However, if you are curious like us
and wants to understand how it works, the first step in the unpacking process is the

2/13

https://twitter.com/hasherezade

allocation of an encrypted content into memory:

100040CF . 897D B8 MOV
10004002 . E8 73FBFFFF whoami . 10003C4A

. 8845 BC MOV EAX,

166848DA . 8345 EC ADD EAX

10003C4A=whoami . 10003C4A

) AF 9D B
) 2F 1E
E5 95
oC 40
: ipbii. 4ii
~Ar-Qé2d
90240060 2E 45 83 13 A5 C7 23 B A : 55 E1 69 F2 LEFfNECH#EHUL A EUA10

Encrypted DLL in Memory.

This data is an encrypted small DLL that is responsible for unpacking the Dridex loader. Also,
we noticed that the magic bytes (MZ) for the MS-DOS header was not present, probably to
avoid automatic filetype identifications.

00340000

08340010

2034

ﬂgﬂ,',f!,
1s program canno
t be run in DOS

00340070

Decrypted DLL in Memory.

After the decryption process, the main executable transfers the execution to the allocated
DLL, which unpacks the Dridex Loader and then replaces the main executable code with the
payload’s code.

3/13

pO341157

Decrypted DLL

E8 44070000
31Ce
BB4D EB

20341840
XOR EAX,EAX
MOV ECX,

6 B0 1D o©é
g 00 00 00

o0 00 Of

00 00 00 @

@0 B4 o9

72 6F

Dridex Payload in Memory.

2. Dynamic API Calls

00 04

200

o0

FF FF 00 00

00 00 00 00

B 00 00 00 00

EO 90 00 @

4C (D 2

} 61 6E 6E 6 is program canno

20 44 4F 53 20 t be run in DOS

00 PB 00 mode. ...

Dridex doesn’t have an import table like regular PE files. Instead, all the API calls are
dynamically resolved by the malware using a custom technique to avoid detection by APIs
and to make reverse engineering more difficult.

To resolve an API, it calls a “resolver” function passing two parameters, both custom hashes.
The first one is a hash for the DLL name that contains the API, and the second one is the
hash of the APl name that Dridex needs to resolve.

push
push
call
cmp
mov

OEEDBEE97h

52402A45h

sub 414F60

byte 42A018, 0

dword 42A00C, | eax|

API Hash

B DLLHash

. Resolver Function

API Address

The way the APl is resolved isn'’t trivial, but in summary, if the APl wasn’t already resolved by
the malware, it parses the DLL linked list, located in the process’ PEB (Process Environment

4/13

Block), generating a CRC32 hash for each DLL and API name and compares that with the
ones that was passed into the function. Aside from the CRC32 hash, the value is also
“xored” with a custom key, making the values unique on each Dridex sample.

DLL Name

>>>_hex(cre32(b[KERNEL32.DLL]))

'0x998b531e’

unpac 148CD 0000000C >>> hex({0®x998b531e |~ |@xCBCB795B)

MOV EDI,DWORD PTR DS: 0000000C " @ X 5 2 40 2 a 4 5 v

unpacked. 20414685)I 005B2A28 Dridex Custom DLL Hash

Dridex Searching for DLL Using Custom Hash.

Therefore, in the example above, the first hash stands for “kernel32.dII”. Using this same
logic, we created a small IDA script which resolves API calls automatically and inserts a
comment where the function is called, so we can easily search where in the code certain
DLLs or APIs are being used.

push OEEDBEES7h push OEEDBEE97h

push 524@2AA5h push 52402AA5h

call sub_414F60 call mw_api_resolver ; kernel32.dll!ExitProcess
cmp byte 42A818, 0 cmp byte 42A818, ©

mov dword_42A00C, eax mov dword_42A00C, eax

jz short loc 40272C jz short loc_40272C

ida_api_resolver.py

Directio Ty; Address Text

@ D.. p sub_422260+36 call mw_api_resolver; wininet.d'InternetOpenA

@ D.. p sub_422340+1D call mw_api_resolver; wininet.dl'InternetCloseHandle
I@ D.. p sub_422340+BA call mw_api_resolver; wininet.dl'InternetCloseHandle
I@ D.. p sub_422340+E9 call mw_api_resolver; wininet.dl'InternetCloseHandle
@ D.. p sub_422450+EB call mw_api_resolver; wininet.dl'InternetConnectW
@ D.. p sub_422450+12B call mw_api_resolver; wininet.dl!InternetCloseHandle

Block with Encrypted Strings.

Each chunk contains one or more strings that are encrypted with RC4, where the key is the
first 40 bytes (in little-endian format) of each block.

5/13

https://github.com/appgate/labs/tree/master/dridex/ida

C AA @@ 50 1F 87 SE C3 A@ EA 4A 6D Al BA
71 EC B2 92 51 AA CB FE 1B ©A 29 6D 4E

88 F3 74 B9 53 20/11D DA F2 82 97 34 6A FO

9 48 (D 5F EE EA 26 BD AA E5 CA FD 92 5D
24 12 C6 0@ 9A 98 FD 15 2C 80 02 C2 (5 enc_data = data[40:]

C 3A 74 BD 64 D7 43 65 34 43 D4 BO 45 (B

98 D7 FD BF C7 5C D6 CFloo 00 00 00 00 00

key = data[:40][::-1]

>>> ARC4.new(key).decrypt(enc_data)
b'SOFTWARE/TrendMicro/Vizor\xee\\vizoruUniclientLibrary.d11\x00ProductPath\xee\xee'

Decrypting Dridex Strings.

Aside from the encrypted strings, we also found plain text strings in this recent Loader that
were not present in older versions, which can be used for identification (Yara rule):

e bot

e VNnC

e socks

e uacme

o list

e cve-2015-0057 (mod>5)

e TrendMicro (mod9)

e NetChecker (mod10)

¢ rep: DllLoaded (dmod5)

» rep: DlIStarted (dmod6)

e rep: NetGood (dmod7)

e rep: NetFail (dmod8)

o rep: NetPart (dmod9)

e rep: StartedInLo (dmod10)
e rep: StartedInHi (dmod11)

4. C2 Network Communication

The loader is responsible for the initial C2 communication and for downloading additional
files, such as the bot and the modules. Analyzing the function that does such
communication, we could see that the command sent to the C2 is passed as a parameter,
and it's the CRC32 hash of the command string.

6/13

[mov edx, 11041F@1h ; "bot" request| |mov edx, 18F8C844h : "list" request|

lea ecx, [ebp+var_10] lea ecx, [ebp+var 10]
call mw_c2_request call mw_c2_request
{mov edx, 69BE7CEEh ; "dmod6" request|
lea ecx, |ebp+var E4]
call mw_c2 request

Function for C2 Communication.

Curiously though, that despite using the hashes of the commands in the communication, this
specific sample has the same commands in the strings, as mentioned above, such as the
"list" that requests a list of IPs to connect or the "bot" that is the command to download the
next stage.

Before doing the request, the botnet ID and the C2 addresses are parsed.

> b6:8B46 04 MOV AX,WORD PTR D5:[ESI+4]

. BFB7CB MOVZIX ECX,AX

. BBO6 MOV EAX,DWORD PTR DS:[ESI]

. 894424 14 MOV [y EAX
. BD4424 acC LEA EAX,

- 66:894C24 18 | MOV s X

. BDAC24 14 LEA ECX,

. 50 PUSH EAX

. (74424 20 000 | MOV L)

. EB 1BBFO100 unpacked . 08420FDO

. BBOD D4A34200 | MOV ECK,DWORD PTR D5:|42A3D4]
- BBDO MOV EDX, EAX

. 83C1 04 ADD ECX,4

. FF31 PUSH DWORD PTR DS:[ECX]

R PUSH DWORD PTR DS:[EDX]

. E8 94BFo000 unpacked.0040E060

. BDAC24 aC LEA ECX,

- EB 2B7A0000 unpacked . 0040CB00

. OFB6@5 1BAG42(| MOVZX EAX,BYTE PTR DS:[42A01B] Pointer to next address

. BD76 06 LEA ESI,DWORD PTR D5:[ESI+6] 4 bytes (IP) + 2 bytes (Port)
. 47 '

. 3BF8 CMP EDI, EAX

7€ AC SHORT unpacked.00405090

» A1 D4A34260 MOV EAX,DWORD PTR DS:[42A3D4]
» 5F POP EDI

Stack DS:[©01BFB3C]=008936F0, J(ASCII "185.201.9.197:9443")

C2 Address

Dridex Parsing Command & Control IPs

This information is stored in the PE “.data” section, represented in bytes, along with the
Dridex botnet ID.

7/13

Dridex Botnet ID (12333)

88 eDh e
(9 @9 (5 E3 2 A
16 A3 82]|1E 6F B1 5D BA 24 3
a1)1 6D 68 CC C6 D7 ©C @5 27 25 BO

>>> get ip(b"\x2d\x4f\x08\x19\xbb\x01")
45.79.8.25:443

>>> get_ip(b"\xb9\xc9\x09\xc5\xe3\x24")
185.201.9.197:9443 Cc2
Addresses
get ip(b"\xd9\xad\x4e\xa6\x38\x12")
.160./8.1606:46064

get_ip(b"\x6c\xaf\x09\x16\xa3\x82")
.175.9.22:33443

Dridex C2 IPs.

Once these addresses are parsed, Dridex then sends a POST request to one of the C2
addresses and, bypassing the SSL, we could see that the data is encrypted. If the server
doesn’t respond as expected, Dridex continues to send the same content to the other IPs.

1 POST f HTTR/1.1

2 Cache-Control: no-cache
3 Host: 45.79.8.25

4 Content-Length: 1935

5 Connection: close

7 6X qO6(~68]" 10l OOEiNvODESS | FhA+E | Yx$2L0EAEY 11 "0 xgd"SA0N0| Tef=3
5 ¥OUeH?UHTORUUMCE iARido7.0&yck 1%E+-IivwhaWp #ao0FAiy: O3
) mtm|z-hdx)D
10 Wd%ii; AhERtabady
11 i;ICI+*28woa .)
12 =GI6ItU~zIc&) TRELTD"_UISGUKAe?)i_Nr@*RHI] gOxN, IopkiZFCE
15 #e{cgé +hN(%] 2 +oL}Ars
14 g-zBh" EJyefidalve"Oazi"wzyakl»Itl *Zéjg de £EYOVP42ATi3"i0; Al
xoRACEACTCaUqZYRTUSOY] AcBOC{Edéyplaua+ TR{su{m-kOoLOZ: .25 «f-%ép

16 &»0r =5&0p?, ~IAjwx BH a?A&x§ /T.*h byzh«026AEs "'ES87i06;5ac| AU’
17 éyZe\ C*tiEiiRlx#0z-thad¥" BaEikiFyxLeX=EUvAii, S2YUlba O=Ug\I0AMOE
18 elvEROCHERR)1 7wudICd™ <wAZE "Wl "D+ /Si+BA~ TYYWETDNpa® | p. GCE™ 0&d«
"OTyINGUSEE.dA3qi~ " Beii7*wC|Ep U2 ~1-czoRAco3elr#opsns| zAT dazhiA
19 [,{céd=RofOel Z&!r<BOUAB'Pai , #adDzS&]jh#0Kpe:+ hdqlOuin_pEdx6l(
A§h/ ASEP#XDPEOX1DI *nEPY AP P CYyOBEENA<ABEzI1iZ1akWe, 4T, qI1 (OEDi&ERX
20 F-SLé»pu§&tjoathosmm) ULE I uB<LalB/d- cOBolREaanNl yIjy;aagije

Dridex POST Request to C2.

8/13

After analyzing the function, we found that the malware uses the first 4 bytes as a checksum
for the encrypted bytes, with CRC32 hash.

>>> binascii.hexlify(post_data[:4])

Encrypted Network Data Checksum

If the checksum matches, the data can be decrypted correctly. The algorithm used by Dridex
is RC4 and the encryption/decryption key is stored among Dridex decrypted strings.

ARC4.new

.00 (lr JHL! D 0.)
o;oTt*uualu++ 2008 2di ibuta 4 9.0.307 516 j()
(9.0.30729.6161);F s Hacker 2.39 ((2. 3¢); P~fthur\ 2
uest Tools 0.141 (0.):VMware Tools (14%L9,,_.tart1nq p

A oaming\nCommonProgramFiles : ‘Prngrdm FLlc;

C 2=C:\\Program Files)

NO\NHOMEDRIVE=C : \nHOMEPATH=\\ admin\nLOC —\LHPPDH =C: \ \admin' \ﬁ.ppDat

) S=Windows_NT\nPath=C indows\\system32;C:\\Wi : aindnws\\iystF
\\\nNPATHEXT=.COM; .EXE; .BAT; .CMD; .VBS; .VB ,.]J;.]_E,..JF;er . _
TIFIER=Intel64 Family 6 Model 94 Stepping 3, GenuinelIntel\ nPF«"utEfﬁF' LEJEL c:\nPPuLE
Files Program Files (x86) rogramFiles \Prog .f'\nF’roqmm.Jr
2\\WindowsPowerShell\\v1.0\\Module \\ \nF’UBLI' S
s\\admin\\AppData\\Local) mp\nTMP=C:\\Users\\ 3jmn ﬂ'spp[l-ata'\"-.,Lo
rs\\admin\nwindir=C: "\l"Lﬂdunl_.\ﬂl-"LﬂdO'J* tracing ﬂaq__?\r1'wir1dr:n-.l5 tracing logfile=C:\

Decrypted Network Data.

The image below illustrates some of the main fields used in the first POST request made by
this Dridex sample.

9/13

1D Bl 11

37 2D 5A €% 70 20 31 37 2E 30
20 28 78 36 34 29 20 28 31 37
74 €61 29 3B 47 6F eF &7 eC &5
€5 20 28 38 35 ZE 30 ZE 34 31
29 3B 47 6F 6F &7 eC &5 20 55
48 €65 6C 70 €5 72 20 28 31 ZE

. Computer Name

. System Info (Hashes)

B Botnet ID (12333)

Request Type
(0x44C8F818 = "list")

Data Sent by Dridex to C2.

5. Automating IOC Extraction

30
2E
20
38
70
33

20
30
43
33
64
2E

62
30
68
2E
6l
33

65
20
72
31
T4
35

0l
T4
62
6F
30
€5
2E

. 0S Arch (0x40 = 64 bits)

32
20
34

OWIN-U2809HMVUTF
_3e2135e69695884
T8c7£6c3967284cCS
46b8a9cb0d4ee755
f615d82£f4f124b54
a0-.+a4.DEz.@...1i
T7-Zip 17.00 beta
(x64) (17.00 be
ta) ;Google Chrom
e (85.0.4183.102
) ;Google Update
Helper (1.3.35.4

Length of Installed

Software List

Installed Software List

Along with this blog post, we are releasing_a python script that automates the 10C extraction

from the Dridex loader. These are the main features implemented by our “Dridex Analysis

Toolkit”:

e Extract Botnet ID;
e Extract C2 IP Addresses;
e Decrypt Strings;

e Decrypt Network Communication.

Furthermore, since most Dridex payloads comes from memory dumps, the script also tries to

unmap the PE file to disk, so it can get the right offsets to parse, example:

10/13

https://github.com/appgate/labs/tree/master/dridex/toolkit

Sipython dridex_analysis_toolkit.py -f ./unpacked_mem_dump.bin -v -c

/

=

I_ — -l
- 112

I |
-1 - | S
[S U (A I VA
) | « I Y B [

| -
U ¥ N B
|

_ _ _ NIRRT T CH T D) A
PN N NN N e

|_
|

N
|
|

Dridex Analysis Toolkit

[+] Output will be saved at: ./unpacked mem dump.bin_output

[+] Binary info

#t# Type: Executable
Compilation Date: 2020-08-16 15:48:19
SHAZ256: 3c86a3c9ef5f62c816bbcd50940822e4192e318be2af9ba768afa97856bc3803a

-] File seems to be mapped, trying to fix...

+] Section '.text' moved to Bx400

+] Section '.rdata' moved to 0x23200

+] Section '.data' moved to 0x29200

+] Section '.reloc' moved to 8x29600

+] Saving unmapped file to: ./funpacked mem_dump.bin_unmapped.bin
+] Done

[+] Found C2 parsing function, pattern from 2820

'bot_id' at section '.data'
'c2_table' at section '.data'

Botnet ID:
12333

C2 Addresses
45.79.8.25:443
185.201.9.197:9443
217.160.78.166:4664
108.175.9.22:33443
[+] Done

Extracting C2 Addresses from Dridex Payload Automatically.

By using the “-s” option, the script searches and decrypts the payload strings and prints any
possible RC4 keys:

Type: Executable
##t Compilation Date: 2020-08-16 15:48:19
it SHA256: 756Ta5527f4c564effbc69dd3b3d76e7196b869976eecacd48c4b34f4ff25dfasc

[+] Searching for encrypted strings (this might take a while)
[+] Found possible 39 encrypted blocks

[+] Found possible RC4 keys used to encrypt network communication
b'xrAuvVcgsoWOBBPhAH5WSaQ1Q2UuZQidMhZYugaYvCPvgttsD9jQkM'
b'VTRBArv8sWNVqJ4WDs2rzCN2QMgXLb9fsEjtRZL6VWE28p931i3ide’

ii# Please, check the output folder to see the decrypted strings

[+] Done

RC4 Keys Found by the Script.

You can then use these keys to decrypt any network communication by using the “-n” option:

Decrypted Network Data.

The script also writes the output data into a folder:

Name
decrypted strings
B botnet_id.txt

B c2 addresses.txt
B rc4 keys.txt

Script Output.

Conclusion

In this post we show the main technical characteristics that makes Dridex a difficult malware
to detect and analyze. By publishing this analysis and the automation script, our intention is
to help analysts understand how key parts of Dridex work and to help organizations detect
and extract Dridex IOCs as early as possible, so that appropriate actions are taken faster.

I0OCs

Packed Dridex Loader
d506f18f771ec417c27a6528c17f08ee9d180d40a0a9c6b6efo3b7a39304b96a
Unpacked Dridex Loader
756fa5527f4c564effbc69dd3b3d76e7196b869976eeae48cab34f4ff25dfadbc

C2 Addresses

12/13

45.79.8[.125:443

185.201.9[.]197:9443

217.160.78[.]166:4664

108.175.9[.]22:33443

Botnet ID

12333

RC4 Keys
xrAuVcgsoWO0BBPhAH5w5aQ1Q2UuZQidMhZYugaYvCPvgttsD9jQkM

VTRBArv8sWNVqJ4WDs2rzCN2QMgXLb9fsEjtRZL6vW628p93i3ide

[1] https://malpedia.caad.fkie.fra...

[2] https://malpedia.caad.fkie.fra...

[3] https://github.com/hasherezade...

13/13

https://malpedia.caad.fkie.fraunhofer.de/details/win.dridex
https://malpedia.caad.fkie.fraunhofer.de/actor/ta505
https://ag-staging.frb.io/admin/entries/blogs/32738-reverse-engineering-dridex-and-automating-ioc-extraction#_ftnref1
https://github.com/hasherezade/pe-sieve

