
1/10

Malware Leveraging XML-RPC Vulnerability to Exploit
WordPress Sites

zscaler.com/blogs/security-research/malware-leveraging-xml-rpc-vulnerability-exploit-wordpress-sites

We have written a number of blogs about vulnerabilities within and attacks on sites built with
WordPress. And, when you consider that 34 percent of all websites in the world are built with
WordPress, it’s understandable that cybercriminals will continue to focus their attention on
this popular platform.

One of the most common attack vectors employed by these bad actors is to launch an XML-
RPC attack. XML-RPC on WordPress, which is enabled by default, is actually an API that
provides third-party applications and services the ability to interact with WordPress sites,
rather than through a browser. Attackers use this channel to establish a remote connection to
a WordPress site and make modifications without being directly logged in to your WordPress
system. However, if a WordPress site didn’t disable XML-RPC, there is no limit to the number
of login attempts that can be made by a hacker, meaning it is just a matter of time before a
cybercriminal can gain access.

Recently, the Zscaler ThreatLabZ team came across a scheme to attack WordPress sites
where a malicious program gets a list of WordPress sites from a C&C server which then are
attacked leveraging the XML-RPC pingback method to fingerprint the existing vulnerabilities
on the listed WordPress sites.

Even though we saw a payload used in this attack in our Zscaler cloud and also found a
campaign of similar files on VirusTotal, we haven’t found any specific spam templates used
for this campaign. Additionally, the payloads appear to be new and had no specific
attribution, so we have given a new name to this program based on its activity—
Win32.Backdoor.WPbrutebot.

https://www.zscaler.com/blogs/security-research/malware-leveraging-xml-rpc-vulnerability-exploit-wordpress-sites
https://www.zscaler.com/blogs/research/cybercriminals-targeting-multiple-vulnerabilities-wordpress-plugins
https://www.zscaler.com/blogs/research/compromised-wordpress-sites-used-distribute-adwind-rat
https://hostingtribunal.com/blog/wordpress-statistics/
https://www.virustotal.com/graph/g4f708a8a274f4ef1a8727d0c6e00d5a5f5d879652067434797084e53f5d37bef

2/10

Technical analysis

In our research, we found several samples pertaining to this campaign but we analyzed one
sample here for brevity and as an example.

In the sample set we worked on, we found that almost all samples used Microsoft-version
information, but all of them lack a legitimate Windows Digital Signature and left the company
name as TODO, which implies that these files are being generated through a script and this
section is still a work in progress.

Figure 1: The common metadata used in most files in this campaign.

Another feature we found was that InternalName was always a sequence of 2s.
Unfortunately, we weren’t able to conclude if this was intentional or not.

The initial layer of the malware is for decoding the URIs used to make initial contact with the
C&C server.

The first section is unpacked as shown in Figure 2:

3/10

Figure 2: The decryption loop of this program.

This decryption loop is a simple XOR decryption that sequentially runs from B5 to C7, which
gives us /lk4238fh317/update.php.

Figure 3 shows the debugger dump.

Figure 3: The decrypted string of this program.

Next, the domain is generated using another XOR-based decryption where the key goes
from B5 to C0.

Figure 4: The decryption loop for this program.

The domain generated is k6239847[.]lib. This URL is then used with blockchain DNS.

Figure 5: The DNS query.

The blockchain DNS URI is decrypted using a similar XOR loop as shown in Figure 6. The
value compared depends on the size of the blockchain DNS URI.

4/10

Figure 6: The decryption loop.

These are first assembled in heap using RtlAllocateHeap.

Figure 7: The decrypted strings.

The code shown in Figure 8 is called several times to allocate heap to save decrypted strings
that are used later to perform network activity or for creating files.

Figure 8: The API call details.

This same code is reused to assemble user-agent strings, which are later used for making
internet connections.

5/10

Figure 9: The user-agents employed in this attack.

This is then used to create a DNS request for the blockchain DNS server.

Figure 10: The concatenated URL.

The DNS request generated produces a C&C IP of 217.8.117[.]48, which can be confirmed
online at explorer.emercoin[.]com/nvs/dns.

6/10

Figure 11: The domains found at emercoin.com.

The segment of a URL created during the first decryption loop (as shown above) is then
used with the IP address to contact the C&C. The URL created is
217.8.117[.]48/lk4238fh317/update.

The C&C then replies back with 217.8.117[.]48/j537djjlhg763/svchst.exe, which is the
downloaded payload. The payload is downloaded at C:\Users\User-
Name\AppData\Roaming\svchst.exe.

Figure 12: The program downloading an updated version of itself.

The downloaded sample (MD5:86374F27C1A915D970BE3103D22512B9) is an updated
version of the parent sample, which downloads itself to ensure that the latest version of the
malicious program is running on the system. This sample also performs a DNS query on
k6239847[.]lib. The string is obfuscated by breaking the string in two parts—k623 and
9847.lib, which are concatenated in memory.

This time, a command is run using cmd.exe /C ping 1.1.1.1 -n 1 -w., where -n means the
number of echo requests to send and -w is the timeout in milliseconds to wait for each reply.
1.1.1.1 is popular DNS service by Cloudflare.

7/10

The full command is cmd.exe /C ping 1.1.1.1 -n 1 -w -n 1 -w3000 > Nul & Del /f /q \"%s.

The program then enumerates system information including information such as user name,
processor architecture, and more.

Figure 13: The algorithm to initiate the /xmlrpc.php attack.

8/10

Figure 14: The attack vectors found in the file.

Here, the malicious program is using <methodName>wp.getUsersBlogs</methodName>
to execute a brute force attack via the “wp.getUsersBlogs” method of xmlrpc.php where an
attacker is actually doing a reverse IP lookup for the IPs fetched from the C&C and is looking
for all the available methods on the corresponding DNS. Once found, it attempts to gain the
login via cookie-based authentication by logging into WordPress using cURL, authenticating
the server (which ran the cURL script) and providing the username/password to the login
page of the desired WordPress site.

Here is a redacted list of a few WordPress sites the attacker is trying to attack leveraging this
malware payload:

Figure 15: The list of WordPress sites targeted for a brute force attack.

We then went on hunting for similar samples. We were able to unearth more samples
connecting to the same domains (k6239847.lib) and IP address (217.8.117.48). The samples
we found had similar activity but used a .space TLD domain as one of its C&C.

Cloud Sandbox detection

The malware payload was successfully detected and blocked by the Zscaler Cloud Sandbox
as seen in the Figure 16.

9/10

Figure 16: The Zscaler Cloud Sandbox successfully detected the malware.

Advanced Threat Signature name:

Win32.Backdoor.Wpbrutebot

Conclusion

Due to its popularity, WordPress is a common target for cyberattacks. As such, WordPress
admins need to be on alert to reports of newly found vulnerabilities and attacks. In addition,
WordPress admin should keep the XML-RPC option disabled and refrain from using logins
from third-party applications.

Zscaler continues to protect our customers from such attacks and detects these malicious
programs in our Cloud Sandbox in real time.

MITRE ATT&CK TTP Mapping

T1212 Credential Access

T1110 Brute Force

T1556 Modify Authentication Process

T1497 Sandbox Evasion

https://threatlibrary.zscaler.com/?keyword=wpbrutebot

10/10

T1055 Process Injection

T1003 OS Credential Dumping

T1491 Defacement

IOCs

Hashes:

2ed7662ec8e2022d9cebec3a8ebaf838
 c09cf4312167fa9683d8e8733004b7e6
 86374f27c1a915d970be3103d22512b9
 d88a7fca98e89aaf593163b787165766

 03caf1cf96f95b82536fc8b7d94c5a61
74f5107acd2e51dc407253f15d718be3

 a54fa899a524f0cd34ae90f9820b41e0

IPs:

207.148.83[.]241
 5.132.191[.]104

 66.70.228[.]164

