
1/12

[RE016] Malware Analysis: ModiLoader
blog.vincss.net/2020/09/re016-malware-analysis-modiloader-eng.html

1. Introduction

Recently, I have been investigating a malware loader which is ModiLoader. This loader is
delivered through the Malspam services to lure end users to execute malicious code. Similar
to other loaders, ModiLoader also has multi stages to download the final payload which is
responsible for stealing the victim's information. After digged into some samples, I realized
that this loader is quite simple and didn't apply anti-analysis techniques like Anti-Debug,
Anti-VM that we have seen in GuLoader/CloudEyE samples (1;2). Instead, for avoiding
antivirus detection, this loader uses digital signatures, decrypts payloads, Url, the inject code
function at runtime and executes the payload directly from memory.

Currently, according to my observation, there are not many analysis documents about this
loader in the world as well as in Vietnam. So, in this post, I will cover techniques are used by
this loader as well as apply new released tool from FireEye is capa that helps to quickly find
the loader's main code. During the analysis, I also try to simulate the malicious code in
python script for automatic extracting and decoding payload, Url.

 
2. About the sample

SHA256: 9d71c01a2e63e041ca58886eba792d3fc0c0064198d225f2f0e2e70c6222365c

https://blog.vincss.net/2020/09/re016-malware-analysis-modiloader-eng.html
https://blog.vincss.net/2020/03/re011-unpack-crypter-cua-malware-netwire-bang-x64dbg.html
https://blog.vincss.net/2020/05/re014-guloader-antivm-techniques.html
https://www.fireeye.com/blog/threat-research/2020/07/capa-automatically-identify-malware-capabilities.html
https://bazaar.abuse.ch/sample/9d71c01a2e63e041ca58886eba792d3fc0c0064198d225f2f0e2e70c6222365c/


2/12

Results from PE Scanner tools show that this loader is written in Delphi, using Digital
Signatures to bypass the AV programs running on the client:

 

 

 

3. Technical analysis

3.1. First stage analysis

At the first stage, the loader (considered as the first payload) performs the task of extracting
data, decoding the second payload (this payload can be dll or exe), and executing the
payload from memory.

By using IDA, at the end of the automated analysis, IDA has identified up to 5,385 functions:

https://1.bp.blogspot.com/-h02gehan8j0/X1rgZ8wuzAI/AAAAAAAABNM/epVasci6ChA9g9ltqNC0JwW70PGO5aDjQCNcBGAsYHQ/s683/Pic1.png
https://1.bp.blogspot.com/--hdz1Wolpx8/X1rgghnjaoI/AAAAAAAABNQ/MlDq04-DSRIK6MzEH9EyhSPFmVUxhKD6ACNcBGAsYHQ/s729/Pic2.png
https://1.bp.blogspot.com/-bXB5o4Pkbyg/X1rgmXe-ABI/AAAAAAAABNU/GIbMfg51RG0PuGVwllEAd4afpI75gYg6ACNcBGAsYHQ/s402/Pic3.png


3/12

 
Code block at start() function of loader:

 
Although, much more functions were identified as above, most of them are Windows APIs as
well as Delphi’s library functions, so that finding out the main code related to decoding the
second payload will take a long time. With the help of capa, I quickly found the code related
to executing the second payload and then traced back to the code that responsible for
decoding this payload.

https://1.bp.blogspot.com/-5Xp0XgAdGjk/X1rhMIuOM7I/AAAAAAAABNk/RWxG8z2aZsA_v3GW6up--OeOs9MUUKMNgCNcBGAsYHQ/s309/Pic4.png
https://1.bp.blogspot.com/-2xoPWCCOLLA/X1rhZmxRnqI/AAAAAAAABNo/1QfRJx45lKwVprJFKzq-X4UgTWWESIePACNcBGAsYHQ/s758/Pic5.png
https://www.fireeye.com/blog/threat-research/2020/07/capa-automatically-identify-malware-capabilities.html


4/12

The entire code at sub_498CDC() function is responsible for parsing the payload, mapping
into the memory and executing it. Code in this function before and after applying the relevant
struct:

 
Trace back will reach sub_4994EC(), this function performs tasks:

Reads all data from the resource named "T__7412N15D" into memory.

Finds "OPPO" string in resource binary data to retrieve the encrypted payload.

https://1.bp.blogspot.com/-3cc9k-9F7xc/X1riYbSAo_I/AAAAAAAABN4/FFxloE9R5nsTYVuDaJoCHeuLCkG9ZrZmACNcBGAsYHQ/s479/Pic6.png
https://1.bp.blogspot.com/-DqE45H1ou7Q/X1rifcpH72I/AAAAAAAABN8/7J41zEfTMfAuFGrGTdneI5Wy66KsFpxKQCNcBGAsYHQ/s761/Pic7.png
https://1.bp.blogspot.com/-ixH997pGnrA/X1ri2aVovhI/AAAAAAAABOI/GW4Ebb-jzesx46UiBlEQMgUTW5l08axwQCNcBGAsYHQ/s2049/Pic8.png
https://1.bp.blogspot.com/-U-gIbAkeh-0/X1rjbG8ExVI/AAAAAAAABOU/bZCaKy1rGeYtI3PeOuZZvGVXTEPf8BqpgCNcBGAsYHQ/s1456/Pic9.png


5/12

Performs decoding to get the second payload. The key used in decoding process is a
numeric value.
Searches string in the second payload and replace it with the encoded URL string.

 
In the picture above, the decryption key is an integer converted from the string. In this
sample, key value is 0x30

. The code is responsible for decoding the payload as shown below:

 

https://1.bp.blogspot.com/-BhF3IqiPmyc/X1rjo-MGluI/AAAAAAAABOY/paTIP51sk98SJIJsuhnSuoAm1u18Y1EqQCNcBGAsYHQ/s557/Pic10.png
https://1.bp.blogspot.com/-s3pawwlFwYM/X1rj4POGzdI/AAAAAAAABOg/xl0ZrtQ2feQwLilnQbJHELcU_-Qfm-U2ACNcBGAsYHQ/s1396/Pic11.png


6/12

 
An implementation of this decoding operation can be written in Python as the below image:

 
Once the payload has been decoded, the loader will search for the placeholder in the
decoded payload and replace the 168 “z” characters with the encoded URL string. Finally,
once the payload is ready for execution, it calls sub_498CDC() for executing the payload.

And from beginning until now, the above entire technical analysis can be done with a python
script to obtain the second payload.

 

https://1.bp.blogspot.com/-IGkdYPS0Ka4/X1rkI5DBnwI/AAAAAAAABOs/HhTf0QEpeOw_xLv2UUra5V0oVNP35RE7gCNcBGAsYHQ/s699/Pic12.png
https://1.bp.blogspot.com/-i809GdZdczI/X1rkZS70ApI/AAAAAAAABO0/a7uhCQFCp8ku62G9tiVDcNOUf4qA_q3cwCNcBGAsYHQ/s584/Pic13.png
https://1.bp.blogspot.com/-hb-ueItuP4o/X1rkwwFgBnI/AAAAAAAABO8/uA0THp5uIAsA-9y3bswbpNJ7JhAMIzbEQCNcBGAsYHQ/s1087/Pic14.png


7/12

3.2. Second stage analysis

Check the payload retrieved in the above step, it is also written in Delphi:

With the similar method, I found sub_45BE08() which is responsible for allocating the region
of memory, map the final payload after decoded into this region, and then execute it.

 By tracing back, I found the code that starts at TForm1_Timer1Timer (recognized by IDA by
signature) at the address is 0x45CC10. Before calling f_main_loader() at address is
0x45C26C, the code from here is responsible for decoding Url and checking the Internet
connection by trying to connect to the decoded Url is https://www.microsoft.com.

Decoding algorithm at f_decode_char_and_concat_str() function is as simple as follows:
dec_char = (enc_char >> 4) | (0x10 * enc_char);

At f_main_loader(), it also uses the same above function to decode and get the string is
"Yes". This string is later used as xor_Key for decoding the Url to download the last payload
(The encrypted Url is the string in the replacement step that was described above) as well as
decoding the downloaded payload. f_decode_url_and_payload(void *enc_buf, LPSTR
szKey, void *dec_buf) function takes three parameters:

 The first parameter is enc_buf, used for store the encoded data.
The second parameter is szKey. It is the "Yes" string used to decode the data.

https://1.bp.blogspot.com/-dNBTUzDmgVE/X1rlFdwWD_I/AAAAAAAABPI/jf6kaizSQ88saH4zQjtNtKQMjidYvEP3gCNcBGAsYHQ/s555/Pic15.png
https://1.bp.blogspot.com/-lJvztXaysog/X1rlgpKPdUI/AAAAAAAABPQ/bl_l7sbpLzstXuYGF4pGd8RnlhshtEzmQCNcBGAsYHQ/s799/Pic16.png


8/12

The third parameter is dec_buf, used for store the decoded data.

Diving into this decoding function, you will realize that it will loop through all data, each
iteration takes 2 bytes, convert the string to an integer, then xor with the character extracted
from the decryption key. Once decrypted, the byte is then concatenated to the third
argument, which is the output buffer.

This entire decoding function is rewritten in python as follows:

 
Back to the f_main_loader(), first it will decode the Url for retrieving the last payload:

 
Perform decoding using the python code above, I obtain the Url as below image:

https://1.bp.blogspot.com/-UTTA2yehRP0/X1rop-5NoBI/AAAAAAAABPc/sKcj8UVHgoICj05CwicHg0R-k-U0iCGDQCNcBGAsYHQ/s1323/Pic17.png
https://1.bp.blogspot.com/-_jQK736FKWA/X1roxsQ7fQI/AAAAAAAABPg/5EOhG_Jt3K444hBbu6QjhUXXX0fryUueACNcBGAsYHQ/s615/Pic18.png
https://1.bp.blogspot.com/-TQMO4xRoAio/X1rpOPiC1gI/AAAAAAAABPs/4-dfunjDUC0YN4vcAOpokaKxq9E8XdNXgCNcBGAsYHQ/s1346/Pic19.png
https://1.bp.blogspot.com/-uPmU-hvHaVE/X1rpVXMHqkI/AAAAAAAABPw/LugEd2sXiyYvLV1BiOCrn6D95PZrwK6jACNcBGAsYHQ/s919/Pic20.png


9/12

 
Next, it uses the WinHTTP WinHttpRequest COM object for downloading the encrypted
payload from the above Url. Instead of using Internet APIs functions from Wininet library as
in some other samples, the change to using COM object might be aimed at avoiding
detection by AV programs.

 
Here, I use wget to download the payload. The payload’s content is stored in hex strings
similar to the encoded above Url.

Payload data will be reversed and decoded by the same f_decode_url_and_payload
function with the same decoding key is "Yes". Once decrypted, the sample will allocate a
region of memory, map the payload into that region, and then execute it.

Along with the python code above, I can decode the downloaded payload and obtain the final
payload. This payload is a dll file and also written in Delphi:

https://1.bp.blogspot.com/-oA4-InvnGOQ/X1rqHrlRNCI/AAAAAAAABP4/1twnGjJ6BpMnG2-M9_uRdAjBRy61lp9MQCNcBGAsYHQ/s967/Pic21.png
https://1.bp.blogspot.com/-42IjAIIHwz4/X1rqV6UoEwI/AAAAAAAABP8/uKX6ZfDXh-gEcweW6xEH-4ZVZOERolHhQCNcBGAsYHQ/s1102/Pic22.png
https://1.bp.blogspot.com/-hXWhvEF6Wz4/X1rqth4rWeI/AAAAAAAABQI/gg31pt_Y4jcVe-oBxVdsbAhc7iAbunXIwCNcBGAsYHQ/s1060/Pic23.png


10/12

 

3.3. Third stage analysis

The above payload is quite complicated, it performs the following tasks:

Reads data from a resource named "DVCLAL" into memory.
Decrypts this resource, then based on the “*()%@5YT!@#G__T@#$%^&*
()__#@$#57$#!@” pattern to read the decrypted data into the corresponding variables.
Retrieves the user’s directory information through the %USERPROFILE% environment
variable and set up the path to %USERPROFILE%\AppData\Local folder.
Creates Vwnt.url and Vwntnet.exe (copy of loader) files in
%USERPROFILE%\AppData\Local folder if that files not exist, then set the value is
“Vwnt” that pointing to the %USERPROFILE%\AppData\Local\Vwnt.url file at
“HKCU\Software\Microsoft\Windows\CurrentVersion\Run” key. Then write data to
Vwnt.url with content that points to Vwntnet.exe file:

Combines the decrypted data from the above resource for decrypting the new payload.

https://1.bp.blogspot.com/-W9oUdRGjK34/X1rq4QMEzKI/AAAAAAAABQM/FVXnbo7Li4Iuh4rX_kL_LXzU9NoXHkfugCNcBGAsYHQ/s1505/Pic24.png
https://1.bp.blogspot.com/-yCCky7VFUCQ/X1rroQkwzDI/AAAAAAAABQY/fc6bBBdS5TgM9h3FIQN0yIi6JE3oiwWKQCNcBGAsYHQ/s1546/Pic25.png


11/12

Decrypts the function is responsible for injecting code. Check "C:\Program Files
(x86)\internet explorer\ieinstal.exe" exists or not, if exists it will inject payload into
ieinstal.exe.

Based on the strings was dumped from the decrypted payload, I can confirm that it
belongs to the Warzone RAT, a well-known RAT that is being offered online and
promoted on various hacking forums.

https://1.bp.blogspot.com/-RFSd8FMdAT0/X1rryZkdTLI/AAAAAAAABQc/cZXcFPZuc0MvUPk0bEU_Td-1xjIMUAjvACNcBGAsYHQ/s1082/Pic26.png
https://1.bp.blogspot.com/-5E_JsFGfuIo/X1rsCAjeOnI/AAAAAAAABQk/wja_swDVqaQBy4awcxPpas1pks8Dzbf0wCNcBGAsYHQ/s1338/Pic27.png


12/12

 

4. References

 

Xem bài phiên bản tiếng Việt

Tran Trung Kien (aka m4n0w4r) 

Malware Analysis Expert

R&D Center - VinCSS (a member of Vingroup)

https://1.bp.blogspot.com/-1wG5vjornw4/X1rsMBGjBEI/AAAAAAAABQs/pWiNQRpJSJAg9SIAD7kWY1aEpz5Oc5_ywCNcBGAsYHQ/s994/Pic28.png
https://blog.vincss.net/2020/09/re016-malware-analysis-modiloader-vie.html

