Malware Config Extraction Diaries #1 - GuLoader

:' malwation.com/malware-config-extraction-diaries-1-guloader/
malwation 08/09/2020
Offset(h) 00 O Coziilmis metin

00037510 16 CE
00037520 16 CE8
00037530 16 Ct&
00037540 9E B3
00037550 16 C
00037560 16 C
00037570 09 15 ¢

00037580 16 Ct&
00037590 16 CEg
000375R0 16 CE

000375B0 14 00 00 89

000375C0 16 C= FE FF w: F

000375D0 16 C2 1E FF 16 C8 1E FF 16 C8 1E FF 16 CE 1E FF

000375E0 16 C2 D9 DO F& 90 E8 25 B6 3a Fnttd:
000375F0 2F 2F 31 35 36 2E 39 36 2E 31 31 32 2E 31 37 39 //156.96.118.179
00037600 2F 41 57 45 4C 45 2D 52 41 57 SF 47 54 57 66 43 /AWELE-RAW_GIWEC
00037610 78 32 33 33 2E 62 DO BS F2 FF x233.bin....éndy
00037620 FF 00 EB AA F5 FF 4 FF FE §.&%3%y....&50%¥
00037630 4D &6F 7A 69 6C 6C 7 69 6E Mozilla/5.0 (Win
00037640 64 6F 77 73 20 4E 4F 57 dows NT 6.1; WOW
00037650 36 34 3B 20 54 72 2E 30 3B 64; Trident/7.0;
00037660 20 72 76 3A 31 31 65 20 47 rv:11,0) like G
00037670 €5 &3 6B &F 00 EE 59 6E 65 ecko.é,dyywinine
00037680 74 2E 64 &C 6C OC 8 FE C2 1E FF t.dll.&(.E.V.E.¥
00037690 16 C2 1E FF 16 C8 1E FF 16 C8 1E FF 16 CE 1E FF .E.V.E.v.E.V.E.¥
000376A0 16 CE8 1E FF 16 C8 1E FF 16 C2 1E FF 16 C8 1E FF .E.¢.E.9.E.¥.E. %

Malware Config Extraction Diaries #2 — njRAT

03/10/2020

The activities of malware are increasing day by day. There are security solutions such as
EDR, anti-virus, anti-malware and sandbox to prevent the activities of malicious software.
However, the success rate of sandboxes, one of the most effective malware analysis
products, is increasing day by day.

Malwation AIMA extract the configurations of malware families with new updates as well as
the extra features it offers, and these configurations are critically important IOCs. Today, we
can tell you that AIMA has stably extracted configurations of dozens of malware families.
And we show how to extract the configurations of the GuLoader malware among them by
writing script in Python and we present it to the open source world.

What is the GuLoader Family?

GuLoader (also known as CloudEye) is a Loader type malware written in the Visual Basic
language. It downloads and runs RAT and Stealer type malwares such as AgentTesla,
NetWire, Formbook from the remote server to the victim’s system. Malwares that are
downloaded and run from the remote server usually located on Google Drive and OneDrive.

Sophisticated malwares that continue to operate today often resort to many obfuscate and
packaging processes in order to avoid security products and complicate the analysis process
of malware analysts. As such, we can do the configuration extraction process from the
healthiest memory dump.

1/12

https://malwation.com/malware-config-extraction-diaries-1-guloader/
https://malwation.com/malware-config-extraction-diaries-2-njrat/

First Part: Robust Analysis and Detection

If you want to extract configurations of a malware family, the most important thing to do is to
continue the analysis stage very well and dump memory on several instances of the malware
family that have identical versions. If you work on different versions, the scripts you have
written will only be working on the sample you are analyzing, not with the corresponding
version of the malware family, which is not a scenario we want.

After obtaining several different samples of the same malware family with the same version,
we perform the analysis steps for each. We take note of the configuration data.

As a result of the analysis, the configuration data that can be extracted from this version of
the GuLoader family are as follows:

* Remote server where the malicious application is downloaded,
User-Agent of the request to the remote server,

Registry path to provide persistence,

Value and key setting in the registry,

Dropped malicioud file path and name.

Part Two: Memory Dump

After all the valuable information described above, we are dumping all the malware samples.
At this point, asynchronous memory dumps give healthier results instead of synchronous
memory dumps. Since the processes on the memory progress very quickly, you may
experience data loss depending on time, so it is necessary to dump asynchronously. AIMA’s
built-in advanced memory dump engine does our job and we get our memory dump in a
healthy way.

We reached certain configurations as a result of our previous analysis. Now we’re drawing
our road map.

1. First, detect the configuration items on the memory dump.
2. Compare the detected configuration items for each sample.
3. Find a specific pattern on memory dump for all malware samples.

Our roadmap is as shown above. We first determine the configuration items from the memory dump.
Remember! Data must always be dumped into memory.

Part Three: Detecting Configurations in Memory Dump

As can be seen in the images below, we have identified the remote server addresses from
which two different samples from the GuLoader family with the same version will download.
When several different examples were examined, it was understood that the “OxFF OxFF
0x68 0x74 x74 0x70” pattern could be used in the relevant version of GuLoader.

2/12

Offset (h) 00

©
[
=]
%]
=)
(0]
[=]
e
[=]
w

0D OE OF Codzilmis metin

00037510 16 C2 1E FF 16 C8 ce 1E FF .E.¥.E.¥.E.¥V.E.¥
00037520 16 C2 1E FF 16 C2 ce 1E FF .E.¥.E.¥.E.¥.E.¥
00037530 16 C8 1E FF 90 FC 4D 5C BA LE.{.uée...YmM\®
00037540 SE B3 CE 46 EB 28 ce 1E FF .*iFe(.¢y.E.¢.E.¢
00037550 ce 1E FF LE.v.BL¢LELv.ELYy
00037560 cs E2 LE.¥.E. y E.y.tne
00037570 09 15 45 C8 1E FF .,..%EX8,E.y.E
00037580 16 C8 ce c8 1E FF .E
00037590 16 C8 ce c8 1E FF 3
000375R0 16 CB 90 34 EB CA

000375B0 14 00 00 29 45 &0 c2 1E FF

000375C0 16 C2 1E FF 16 C8 c2 1E FF

000375D0 16 C2 1E FF 16 C8 C

00037SE0 16 C2 D9 DO F8 90 EE 2B B6 BRI IRiIEE

000375F0 2F 2F 31 35 36 2E 39 36 2E 31 31 38 2E 3 //156.96.118.179
00037600 2F 41 57 45 4C 45 2D 52 /AWELE-RAW_GTWEC
00037610 78 32 33 33 2E 62 69 6E %x233.bin....&pd¢
00037620 FF 00 E8 AA F5 FF 00 F4 V.asBYY. ... &56YY
00037630 4D 2F 57 69 6E Mozilla/5.0 (Win

™
]
)
E 2
-
T
o
0
a

00037640 64
00037650 36

57 4F 57 dows NT €.1; WOW
30 3B €4; Trident/7.0:

ha
c

o
IS

1w o

00037660 20 72 3 30 65 20 47 rv:1l,0) like G
00037670 €5 €3 6B 6F 00 EE OC F3 69 6E 65 ecko.é.4éyywinine
00037680 74 2E 64 6C 6C 00 EB 28 ce 1E FF t.dll.&(.E.¥.E.¥
00037690 16 C2 1E FF 16 C8 1E FF C2 1E FF LE.V.E.¥.E.¥.E.¥
000376A0 16 CE2 1E FF 16 C8 1E FF ce 1E FF .E.¥.E.¥.E.¥.E.¥

Figure 1: Malicious Sample 1

Offset (h) 00

[=]
=)
[=]
¥
[=]
w

04 05 06 07 OB 09 OA OB OC OD OE OF QCdzilmiz metin

000386E0 08 00 00 2% B85 C4 00 00 00 4D 18 BA S W75 T ALY
000386F0 96 EB EB8 25 08 GL] 90 8B 4D —gde,, i%Ex.<M.°
00038700 BO EC 3C 66 E8 0o BO 00 00 ficfRf.
00038710 4D 18 BA 07 70 00 89 45 M.°.Ep8ép...%ET¢
00038720 4D 18 FC Ba 00 00 F8 Moo A'xe_ .. .o%.
00038730 20 01 00 0O 21 99 01 L UBteM, o 1™, gé
00038740 48 08 00 00 59 03 00 H...%.5...8Y...0
00038750 59 8% 8D 8C 42 17 38 ¥%.E...4.°.B.8&

00038760 08 00 00 89 8C 00 00 R T L L
00038770 7D 8% F1 EO 94 00 00 R0 T T
00038780 66 01 00 00 DO BA 9E £.. . UYerM\Ofe, 2 1
00038790] 4D 5C BA Flad,, . REX<M\ &y
00038740 c3 FC 90 X484, . . %E ghu.ed
000387B0 6F 6E &5 &E?h:tﬁa:fﬁanedr
000387C0 6D 2F 64 17 ive,live,com/dow
000387D0 32 45 39 38 38 nload?cid=02E988
000387E0 34 30 41 72 65 73 69 64 40A4COFDECE&resid
000387FO 3D 32 45 39 46 44 36 43 =2E98B840A4COFDEC
00038800 25 32 31 62 6B 65 79 3D %211172gauthkey=
00038810 41 45 63 32 69 72 77 00 AEcgmc_ P8nBirw.
00038820 00 00 00 23 0D 21 OD 2R LBIayV.E (%L1
00038830 OD 21 OD 23 0D 21 0D 2R 1. %, 1 % 1 % 1 %
00038840 OD 21 OD 23 0D 21 0D 2R L 1.%, 1 % 1 % 1 =%
00038850 OD 21 OD 6F TA 63 6C 6C .!.oeeblyiMozill
00038860 €1 2F 35 0 28 6F 77 73 20 4E a/5.0 (Windows N
00038870 54 20 2E 31 3B 20 57 4F 34 3B 20 54 72 T 6.1; WOW64; Tr

Figure 2: MaI|C|ous Samble 2
If we were based only on the “Ox68 0x74 x74 0x70” pattern, we would detect all strings that
start with “http” as a remote server, which would significantly increase our false-positive rate.

We have reached the largest and perhaps the only configuration of the GuLoader family, but
as a result of the analysis, we have also determined that this version of the malware contains
different configurations. This configurations;

e The registry path targeted to ensure persistence on the system,

e The value of set in the targeted registry,

 In which directory of the system and with which name the malware downloaded from
the remote server.

3/12

Offset (n) 00 01 02 03 04 05 06 07 08 09 O OB OC OD OE OF Cézidlmis metin

000377E0 OO0 &9 00 6E 00 74 00 65 00 72 00 6E 00 €5 00 74 .i.n.t.e.r.m.e.t
000377F0 OO0 20 00 &5 00 T8 00 70 00 &C 00 &F 00 72 00 65 . .e.x.p.l.o.r.e
00037800 00 72 00 5C 00 &9 00 &5 00 78 00 70 00 &C 00 £F .r.\.i.e.x.p.l.o
00037810 00 72 00 &5 00 ZE 00 &5 00 T8 00 &5 00 00 00 EE .T.€...E.XK.E...8&
00037820 2C C8 1E FF 16 C2 1E FF 16 C& 1E FF 16 C2 1E FF LE.¥.E.¥.E.¥.E.¥
00037830 16 C8 1E FF 16 C2 1E FF 16 C8 1E FF 16 C2 1E FF L.E.¥.E.¥V.E.¥.E.¥
00037840 16 C8 1E FF 16 C8 1E FF 16 C&8 1E FF 16 90 E8 FE .E.¥.E.¥.E.¥..és
00037850 E5 FF FF 5C 00 &2 00 6E 00 74 00 &5 00 72 00 6E &¥¥\.i.n.t.e.r.n
00037860 00 &5 00 74 00 20 00 &5 00 78 00 70 00 &C 00 &F .e.t. .e.x.p.l.o
Q0037870 OO0 72 00 &5 00 T2 00 5C 00 69 00 &5 00 €% 00 6E .r.e.r.\.i.e.i.n
00037880 00 73 00 74 00 &1 00 &C 00 2E 00 &5 00 78 00 &5 .s.t.a.l...e.x.e
00037890 00 00 00 Ef TF E6 FF FF 5C 00 69 00 6E 00 74 00 ...&.=yy\.i.n.t.

000378R0 65 00 72 00 6E 00 &5 00 T4 00 20 00 65 00 T8 00 e.r.m.e.t. .e.X.
000378B0 7O 00 &C 00 &F 00 T2 00 &5 00 T2 00 5C 00 &3 00 p.l.o.r.e.r.h.i.
000378CO 65 00 &C 00 6F 00 77 00 75 00 T4 00 63 00 &C 00 e.l.o.w.u.t.i.l.
00037800 2E 00 &5 00 T8 00 65 00 00 00 E8 88 BY9 FF FF 53 ..8.X.e...&"*§¥5
000378E0 74 61 72 74 75 70 20 %5 65 79 00 EB 2C C8 1E FF tartup key.&,E.¥
000378F0 16 C8 1E FF 16 C2 1E FF 16 C8 1E FF 16 C2 1E FF .E.¥.E.¥V.E.¥.E.¥
00037900 16 C8 1E FF 16 C2 1E FF 16 C& 1E FF 16 C2 1E FF .E.¥.E.¥.E.¥.E.¥
00037910 16 C& 1E FF 16 C2 1E FF 16 FC EB 28 16 C2 1E FF L.E.¥.E.¥V.u8(.E.¥
00037920 16 C8 1E FF 16 C2 1E FF 16 C&8 1E FF 16 C2 1E FF .E.¥.E.¥.E.¥.E.¥
00037930 16 C& 1E FF 16 C2 1E FF 16 C8 1E FF 16 C2 1E FF L.E.¥.E.¥.E.¥.E.¥
00037940 16 C& 1E FF D9 DO E8 1C B8 FF FF 53 &F &6 74 77 L.E.yUGe.,y¥¥Softw
00037950 61 72 &5 5C 4D 69 63 T2 &F 73 6F 66 T4 5C 57 69 are‘\Microsoft\Wi
00037960 &E 64 6F 77 73 5C 43 75 72 72 65 6E 74 56 €5 72 ndows\CurrentVer
00037970 73 69 &F 6E 5C 52 T5 6E 00 EE 28 FF 16 C2 1E FF sion\Run.&(¥.E.¥
00037980 16 C8 1E FF 16 C2 1E FF 16 C8 1E FF 16 C2 1E FF L.E.¥.E.¥.E.¥.E.¥
00037990 16 C8 1E FF 16 C2 1E FF 16 C& 1E FF 16 C2 1E FF .E.¥.E.¥.E.¥.E.¥
0003790 16 C& 1E D9 DO EE BA BE FF FF 00 00 00 00 E8 C6 LE.UGS"%yV....eE
00037980 E9 FF FF 5C 00 66 00 69 00 6C 00 &5 00 6E 00 61 *¥9\.f.i.l.e.n.a
000379C0 00 6D 00 &5 00 31 00 2E 00 65 00 T8 00 65 00 00 .m.e.l...e.X.e..
000379D0 OO0 ES O8 BRL FF FF 5C 00 73 00 75 00 62 00 &6 00 .&.°§§\.s.u.b.f.
000379E0 6F 00 &C 00 64 00 &5 00 T2 00 31 00 00 00 EB 28 wo.l.d.e.r.l...8(
000379F0 16 C& 1E FF 16 C8 1E FF 16 C3 1E FF 16 C2 1E FF .E.¥.E.¥V.E.¥. E ¥
00037R00 16 C8 1E FF 16 C2 1E FF 16 C8 1E FF 16 C& 1E FF E 7. E 7. E 7. E -y

Figure 3: Other Conflguratlons

As a result of the analysis, the permanence mechanism is divided into two in this version of
the GuLoader family. The first type of GuLoader instance drops the VBA script to the
systems TEMP directory, whose only job is to run a copy of itself. The second type of
GuLoader example drops a copy of itself into the system’s user directory and runs it through
the registry. We need a good concept of these two differences because we will write our
Python script accordingly.

Part Four: Writing the Extractor

After all the valuable configurations we find and the roadmap we have created, we can now
automate things.

At this point, we first need to write a function that parses the remote server URL, which is the
configuration critical to us. Then, the function extracting the User-Agent, which will be
included in the HTTP header to connect with the remote server, the function that extracts the

4/12

path to the targeted registry, the function that extracts the data set in the registry, detects
whether the malware is Type 1 or Type 2. According to the function and the type of the
malware, we have drawn our roadmap before writing the Python script, including the path
and the name of the system directory to which it drops itself.

parseURL(dumpFile):

pat = re.compile(b’ \xFF\xFF\>
ip = re.search{pat, dumpFile)
fp.seek{ip.start())

zararli = []

okunan = fp.read(1)

while okunan !=

Figure 4: parseURL Function

zararli.append(okunan)
okunan = fp.read(1)

malUrl = delInvalidData(zararli)
urlDrop
urlDrop = "".join{malUrl)

return urlDrop

In the above parseURL function, we search the memory dump for the pattern that we have
extracted by examining the memory dump. Then we move to the starting point of the pattern
with File Pointer. (This is the starting offset of the remote server).

We read a character from the offset we are in and append every character we read to the
series called “zararli”. When our loop reads the “0x00” byte, it stops and we come to the end
of the remote server address. Then we convert the remote server address, which is one
character in the array, into a string and return it to our main function.

delInvalidData(bArr):
malwCont = []

tfor data in bArr: _ _]
if data > b"\x20" data < b"\x7E": Figure 5: dellnvalidData Function

malwCont.append{data.decode("utf-8"))

return malwCont

5/12

Don’t be confused by the dellnvalidData function here. It only deletes characters that are
interfering and not found in the ASCII table. You can do the same by passing the errors =
“‘ignore” parameter to the decode () function in Python, but we try to write the script in a
structure close to C language and try not to skip the details.

parseUA(dumpFile):

pat = re.compile(b’ \xFF\xFF\x4AD\x6F\x;
findlocate = re.search{pat, dumpFile)
fp.seek(findlocate.start())

zararli = []

okunan = fp.read(1)

while okunan != b\

zararli.append{okunan) Figure 6: parseUA Function

okunan = fp.read(1)

malUA = delInvalidData(zararli)

malwlAgent

malwlAgent = "".join({malUA)

return malwUAgent

We use the same operations we do in our function that parses the remote server while
parsing the User-Agent. Naturally, this function has a separate pattern.

6/12

parseReg(dumpFile}:

pat = re.compile(b’ \xFF\xFF\x
findlocate = re.search(pat, dumpFile)
fp.seek(findlocate.start())

zararli = []
okunan = fp.read(1)

while okunan !=

zararli.append{okunan) Figure 7: parseReg Function

okunan = fp.read(1)

regpath = delInvalidData(zararli)

"".join(regpath)

return regpathstr
One of the configurations was the target registry path to provide persistence. We repeat the

same processes with the pattern we analyze and extract from the memory dump. This
function also shows us the targeted registry path.

Notice we used Python’s re library to find the pattern compile and matching data. You can

use the find () function directly, but using regular expressions will be advantageous in many
places.

7/12

parseRegVal{dumpFile):

findlocate = dumpFile.find(b"\xFF\xFF\
zararli = []

findlocate = fp.seek({findlocate - 1)
okunan = (fp.read(2))

while okunan != b'\xFF\xFF':

¢(findlocate - 1)

fp.seek{findlocate)
if okunan == b"\xFF\xFF":
okunan = fp.read{1)
while okunan !=
zararli.append(okunan)
okunan = fp.read(1)

regval = delInvalidData(zararli)

"".join(regval)

return regvalstr

Figure 8: parseRegVal Function

After finding the registry path, we need to parse the entered key in the targeted registry. If
you remember, the configurations we aimed to remove included the registry key.

This time we show you how to extract the registry key using the find () function to show the
difference between re and find (). This time, we understand that we have come to the
beginning of the configuration with the bytes “OxFF OxFF”. That's why we are doing two byte
reads, and we are doing a backward reading by removing the File pointer by 1. Then we
read up to the “0x00” byte in a classical way, delete non-ASCII characters and return the
parsed registry key to our main function.

Now all that remains is to learn the persistence type of the malware. After that, we will parse
the name in which folder according to its type.

8/12

parseType(dumpFile):

pat = re.compile(b’
findLocate = re.sear

if findLocate ==
return 1

return 2

Figure 9: parseType Function

As you can see in the image above, if the malware has the relevant pattern, it is Type 2, if
not, it is Type 1. Now, we will write the functions that parse both the created folder name and
the name of the malware from the memory dump according to Type 1 and Type 2.

9/12

par gFileTypeOne{dumpFile):
locateRegPath = dumpFile.find{b"
fp.seek(locateRegPath+1)
okunan = fp.read{3)
while ckunan != b™\wWFFix "
locateRegPath = fp.seek(locateRegPath + 1)
ockunan = fp.read(3)
fp.seek(locateRegPath)
zararli =
while okunan != b™
locateRegPath += 1
okunan = fp.read(2)
zararli.append{okunan)
fp.seek(locateRegPath)
while okunan != i :
locateRegPath = fp.seek({locateRegPath + 1)
okunan = fp.read(3) . .
Figure 10: parseregFileTypeOne
fp.seek(locateRegPath)
folderiame
while cokunan != b™

okunan = fp.read(2)
folderlame .append(okunan}

regFile = delInvalidData(zararli)
folderName = delInvalidData(folderMame)

regFilestr = "~
folderNameStr = ©

regFilestr = "".join{regFile)
folderNameStr = "".Jjoin(folderiame)

sonuc = []

sonuc. append (regFilestr.replace(
sonuc. append (folderNameStr. replace(

return sonuc

Function

10/12

par
locateRegPath = dumpFile.find(b™"
fp.seek{locateRegPath+1)
okunan = fp.read{3)
while okunan != b"‘\xFF\xF E
locateRegPath = fp.seek({locateRegPath + 1)
okunan = fp.read(3)

fp.seek{locateRegPath)

[1

payloadiame = []

while okunan != b"\ -
locateRegPath = fp.seek(locateRegPath + 1)
payloadiame . append(okunan)

okunan = fp.read(2)

fp.seek{locateRegPath)

okunan = fp.read(3)}
fp.seek{locateRegPath)

while okunan != :
locateRegPath = fp.seek(locateRegPath + 1)
zararli.append({okunan)
okunan = fp.read(2)

fp.seek{locateRegPath)
while okunan != MF Py

locateRegPath = fp.seek{locateRegPath + 1)
ckunan = fp.read(3)

fp.seek{locateRegPath)

folderName = []

while ckunan != :
locateRegPath = fp.seek({locateRegPath + 1)
okunan = fp.read(2)
folderfame. append(okunan}

regFile = delInvalidData(zararli)
folderName = delInvalidData(folderiame)
payloadiame = delInvalidData(payloadiame)
regFileStr = ™
folderNameStr
payloadNamestr

parseRegFileTypeTwo Function

11/12

As can be seen in the figures above, there is no secondary VBA script because the malware
with Type 1 provides persistence over the registry. The path of the malware is written directly
in the registry. However, the malware with Type 2 gives the path of the VBA script to the
registry. And VBA script is running at system startup. VBA script also runs the malware with
its payload.

In the Type 1 malware, the name of the executable and the name of the folder in which it is
located are included in the bytes under the registry configurations in the memory dump,
respectively.

In the Type 2 malware, the payload, the name of the executable and the name of the folder
in which it is located are included in the bytes under the registry configurations in the
memory dump, respectively.

Although the patterns of both types are the same, we just write a few additional code
snippets and extract the necessary configurations. In the image below, you can see the
output of AIMA’s integrated Config Extractor module.

Info X

PID Process Name Detail

CA&C: https:|/drive google com/[uc?expont =downloadSid =rrgelSIZ0oeWTXQSFVXbELIsBlaBFw2I
User-Agent: Mozilla/5.0(WindowsNTE.1;WOWE4: Trident/7.0;nv11.0)likeGecko

" t 2 " ey
DynamicEngine ContigExtractor 1850086 2436 exe

Y 9 grx » ’ au VBScript added to the reg key.
%\h Ya\directory

Persistence Type: Execute
Reg File: Xte

Malicious Folder: %tempi\h Yo
Downloaded Payload Name: | filename.exe

oK

We are waiting for your feedback and see you in our next Extraction article, we say goodbye.

malwation

12/12

https://malwation.com/author/malwation/

