
1/12

malwation 08/09/2020

Malware Config Extraction Diaries #1 - GuLoader
malwation.com/malware-config-extraction-diaries-1-guloader/

Malware Config Extraction Diaries #2 – njRAT

03/10/2020
The activities of malware are increasing day by day. There are security solutions such as
EDR, anti-virus, anti-malware and sandbox to prevent the activities of malicious software.
However, the success rate of sandboxes, one of the most effective malware analysis
products, is increasing day by day.

Malwation AIMA extract the configurations of malware families with new updates as well as
the extra features it offers, and these configurations are critically important IOCs. Today, we
can tell you that AIMA has stably extracted configurations of dozens of malware families.
And we show how to extract the configurations of the GuLoader malware among them by
writing script in Python and we present it to the open source world.

What is the GuLoader Family?

GuLoader (also known as CloudEye) is a Loader type malware written in the Visual Basic
language. It downloads and runs RAT and Stealer type malwares such as AgentTesla,
NetWire, Formbook from the remote server to the victim’s system. Malwares that are
downloaded and run from the remote server usually located on Google Drive and OneDrive.

Sophisticated malwares that continue to operate today often resort to many obfuscate and
packaging processes in order to avoid security products and complicate the analysis process
of malware analysts. As such, we can do the configuration extraction process from the
healthiest memory dump.

https://malwation.com/malware-config-extraction-diaries-1-guloader/
https://malwation.com/malware-config-extraction-diaries-2-njrat/

2/12

First Part: Robust Analysis and Detection

If you want to extract configurations of a malware family, the most important thing to do is to
continue the analysis stage very well and dump memory on several instances of the malware
family that have identical versions. If you work on different versions, the scripts you have
written will only be working on the sample you are analyzing, not with the corresponding
version of the malware family, which is not a scenario we want.

After obtaining several different samples of the same malware family with the same version,
we perform the analysis steps for each. We take note of the configuration data.

As a result of the analysis, the configuration data that can be extracted from this version of
the GuLoader family are as follows:

Remote server where the malicious application is downloaded,
User-Agent of the request to the remote server,
Registry path to provide persistence,
Value and key setting in the registry,
Dropped malicioud file path and name.

Part Two: Memory Dump

After all the valuable information described above, we are dumping all the malware samples.
At this point, asynchronous memory dumps give healthier results instead of synchronous
memory dumps. Since the processes on the memory progress very quickly, you may
experience data loss depending on time, so it is necessary to dump asynchronously. AIMA’s
built-in advanced memory dump engine does our job and we get our memory dump in a
healthy way.

We reached certain configurations as a result of our previous analysis. Now we’re drawing
our road map.

1. First, detect the configuration items on the memory dump.
2. Compare the detected configuration items for each sample.
3. Find a specific pattern on memory dump for all malware samples.

Our roadmap is as shown above. We first determine the configuration items from the memory dump.
Remember! Data must always be dumped into memory.

Part Three: Detecting Configurations in Memory Dump

As can be seen in the images below, we have identified the remote server addresses from
which two different samples from the GuLoader family with the same version will download.
When several different examples were examined, it was understood that the “0xFF 0xFF
0x68 0x74 x74 0x70” pattern could be used in the relevant version of GuLoader.

3/12

Figure 1: Malicious Sample 1

Figure 2: Malicious Sample 2
If we were based only on the “0x68 0x74 x74 0x70” pattern, we would detect all strings that
start with “http” as a remote server, which would significantly increase our false-positive rate.

We have reached the largest and perhaps the only configuration of the GuLoader family, but
as a result of the analysis, we have also determined that this version of the malware contains
different configurations. This configurations;

The registry path targeted to ensure persistence on the system,
The value of set in the targeted registry,
In which directory of the system and with which name the malware downloaded from
the remote server.

4/12

Figure 3: Other Configurations
As a result of the analysis, the permanence mechanism is divided into two in this version of
the GuLoader family. The first type of GuLoader instance drops the VBA script to the
systems TEMP directory, whose only job is to run a copy of itself. The second type of
GuLoader example drops a copy of itself into the system’s user directory and runs it through
the registry. We need a good concept of these two differences because we will write our
Python script accordingly.

Part Four: Writing the Extractor

After all the valuable configurations we find and the roadmap we have created, we can now
automate things.

At this point, we first need to write a function that parses the remote server URL, which is the
configuration critical to us. Then, the function extracting the User-Agent, which will be
included in the HTTP header to connect with the remote server, the function that extracts the

5/12

path to the targeted registry, the function that extracts the data set in the registry, detects
whether the malware is Type 1 or Type 2. According to the function and the type of the
malware, we have drawn our roadmap before writing the Python script, including the path
and the name of the system directory to which it drops itself.

Figure 4: parseURL Function

In the above parseURL function, we search the memory dump for the pattern that we have
extracted by examining the memory dump. Then we move to the starting point of the pattern
with File Pointer. (This is the starting offset of the remote server).

We read a character from the offset we are in and append every character we read to the
series called “zararli”. When our loop reads the “0x00” byte, it stops and we come to the end
of the remote server address. Then we convert the remote server address, which is one
character in the array, into a string and return it to our main function.

Figure 5: delInvalidData Function

6/12

Don’t be confused by the delInvalidData function here. It only deletes characters that are
interfering and not found in the ASCII table. You can do the same by passing the errors =
“ignore” parameter to the decode () function in Python, but we try to write the script in a
structure close to C language and try not to skip the details.

Figure 6: parseUA Function

We use the same operations we do in our function that parses the remote server while
parsing the User-Agent. Naturally, this function has a separate pattern.

7/12

Figure 7: parseReg Function

One of the configurations was the target registry path to provide persistence. We repeat the
same processes with the pattern we analyze and extract from the memory dump. This
function also shows us the targeted registry path.

Notice we used Python’s re library to find the pattern compile and matching data. You can
use the find () function directly, but using regular expressions will be advantageous in many
places.

8/12

Figure 8: parseRegVal Function

After finding the registry path, we need to parse the entered key in the targeted registry. If
you remember, the configurations we aimed to remove included the registry key.

This time we show you how to extract the registry key using the find () function to show the
difference between re and find (). This time, we understand that we have come to the
beginning of the configuration with the bytes “0xFF 0xFF”. That’s why we are doing two byte
reads, and we are doing a backward reading by removing the File pointer by 1. Then we
read up to the “0x00” byte in a classical way, delete non-ASCII characters and return the
parsed registry key to our main function.

Now all that remains is to learn the persistence type of the malware. After that, we will parse
the name in which folder according to its type.

9/12

Figure 9: parseType Function
As you can see in the image above, if the malware has the relevant pattern, it is Type 2, if
not, it is Type 1. Now, we will write the functions that parse both the created folder name and
the name of the malware from the memory dump according to Type 1 and Type 2.

10/12

Figure 10: parseregFileTypeOne

Function

11/12

Figure 11:

parseRegFileTypeTwo Function

12/12

As can be seen in the figures above, there is no secondary VBA script because the malware
with Type 1 provides persistence over the registry. The path of the malware is written directly
in the registry. However, the malware with Type 2 gives the path of the VBA script to the
registry. And VBA script is running at system startup. VBA script also runs the malware with
its payload.

In the Type 1 malware, the name of the executable and the name of the folder in which it is
located are included in the bytes under the registry configurations in the memory dump,
respectively.

In the Type 2 malware, the payload, the name of the executable and the name of the folder
in which it is located are included in the bytes under the registry configurations in the
memory dump, respectively.

Although the patterns of both types are the same, we just write a few additional code
snippets and extract the necessary configurations. In the image below, you can see the
output of AIMA’s integrated Config Extractor module.

We are waiting for your feedback and see you in our next Extraction article, we say goodbye.

malwation

https://malwation.com/author/malwation/

