
1/13

Automated dynamic import resolving using binary
emulation

lopqto.me/posts/automated-dynamic-import-resolving

Sep 8, 2020

Analyzing malwares is often not an easy task because there are lots of tricks and techniques
that malwares use to evade detection and classification or to make the post-analysis more
difficult. One such trick is to resolve windows API calls dynamically (called “dynamic import
resolving”).

In this blog post, we will talk about dynamic import resolving and a pattern to detect it when
reversing malwares, how to defeat this trick using binary emulation and Qiling framework
(resolve API calls and extract function names), and finally we will integrate our emulation
framework with Ghidra.

In the last section, we will talk about a solution to run Python version 3 and Qiling trough
Ghidra so we can see the result of our script inside the decompiler/disassembler view. It will
make post-analysis easier.

As a real-life example, we will analyze Netwalker which used this technique and we will
discuss our idea around that sample.

What is dynamic import resolving

Let’s talk about dynamic import resolving and indirect function calls. It’s a common technique
that malwares use to hide their intention, make the static analysis more difficult, bypass
some red flags, etc.

In this technique, the malware tries to create an IAT (Import Address Table) during the
execution so there is no sign of used API calls in the PE header.

This technique often shows up in a specific pattern; At the beginning of the execution, the
program will build an array of function pointers which works like an IAT and the malware can
use stored function pointers with indirect calls as shown below:

https://lopqto.me/posts/automated-dynamic-import-resolving
https://en.wikipedia.org/wiki/Portable_Executable

2/13

It’s rather difficult to determine which function would be called by these indirect function calls
without actually executing the binary.

To dynamically make a function pointer, the two API calls LoadLibraryA() and
GetProcAddress() are often used.

According to the Microsoft docs, LoadLibraryA() :

Loads the specified module into the address space of the calling process. The
specified module may cause other modules to be loaded.

HMODULE LoadLibraryA(
 LPCSTR lpLibFileName
);

And GetProcAddress() :

Retrieves the address of an exported function or variable from the specified dynamic-
link library (DLL).

FARPROC GetProcAddress(
 HMODULE hModule,
 LPCSTR lpProcName
);

Look at this pseudo-code as a demonstration:

typedef ret_type (__stdcall *f_func)(param_a, param_b);

HINSTANCE hLibrary = LoadLibrary("ntdll.dll");
f_func LocalNtCreateFile = (f_func)GetProcAddress(hLibrary, "NtCreateFile");

LocalNtCreateFile is a function pointer which points to NtCreateFile , which can be
stored in an array a.k.a IAT.

3/13

To make things more spicy, sometimes malware authors also encrypt the strings passed to
LoadLibrary() and GetProcAddress() like what Netwalker did. It will be near to

impossible to analyze malware without solving this problem first.

Choosing the approach

To solve these types of techniques and tricks there are a few approaches. For example, we
can sometimes decrypt passed strings statically or we can develop an IDA plugin (or any
disassembler and decompiler that supports plugins) but that would be a rather time-
consuming task. Alternatively, we can use debuggers to execute the malware step by step,
and rename variables according to dynamically resolved functions but this is a lot of
repetition.

I chose binary emulation because it gives us the best of both worlds, We can have the power
of automation and the ease of debugging. It’s worth mentioning that emulating can be very
slow at times, especially when dealing with encryption and decryption algorithms. Personally,
I think this is an acceptable trade-off.

For binary emulation we will use Qiling. Read my previous post to see why.

Analyzing Netwalker

Today’s sample is NetWalker link! . Netwalker used dynamic import resolving technique with
encrypted strings so it is a good example for us to demonstrate our idea and approach
around that.

As discussed before, most of the time malwares will try to build an IAT at the beginning of the
execution - and NetWalker does this.

After disassembling the malware, we can see a function call right after the entry .

https://lopqto.me/posts/automated-malware-unpacking#choosing-tools-and-solutions
https://malpedia.caad.fkie.fraunhofer.de/details/win.mailto

4/13

Jumping to that function, we can see the pattern mentioned above; A function is called
multiple times and the return value is stored in an array.

5/13

This pattern is a sign of dynamic import resolving. We can confirm our guess with a
debugger like below:

6/13

Let’s jump to the code and write a script to extract these function names.

I’ve discussed the basics of the Qiling like hook_code() and ql.mem.read in the
previous post.

In such scenarios, we don’t need to emulate the entire malware, we just need to execute the
dynamic import table resolution bit. So we need to find the start and the end of that section.
This is rather easy because our target is inside a function, so we only need to emulate that
specific function.

ql.run(begin=0x0040c1a0, end=0x0040c1a5)

In this process of analyzing malwares with binary emulation, you need only be creative. For
example, in this sample, there are plenty of approaches that you can use; however I chose
the easiest and fastest (specifically development time, this solution performs rather badly).

Let’s talk about the approach. As you can see in the image below, the return value of the
(probably) decrypter and resolver function is stored in the eax register and then moved to
dword ptr [ecx + int] . So we just need to hook the code and extract the value of eax

in the right location.

https://lopqto.me/posts/automated-malware-unpacking

7/13

We can run the emulator and try to hook_code() to catch every instruction that is going to
be executed.

ql.hook_code(extract_eax)

As you may notice, extract_eax() is a callback function that is designed to extract the
value of eax . Qiling will pass the ql (sandbox) object, the address and the size of
the instruction to this callback function.

We can extract the instruction inside extract_eax() with mem.read() as below:

buf = ql.mem.read(address, size)

buf is a Python bytearray of our instruction. The next step is detecting the right location
to extract eax . By looking at the disassembler we can see a pattern. the first part of the
opcode is similar.

8/13

Next if will detect the right location:

if "8941" in buf.hex():

to extract eax value we need to do this:

eax_value = ql.reg.eax

eax_value is an address that points to an API call. We can search that address inside
import_symbols to extract the API name.

func = ql.loader.import_symbols[eax_value]
func_dll = func["dll"]
func_name = func["name"].decode("ascii")

print(f"found {func_dll}.{func_name} at {hex(address)}")

Fulll code will be:

9/13

def extract_eax(ql, address, size):
 buf = ql.mem.read(address, size)

 if "8941" in buf.hex(): # dword ptr [ECX + hex],EAX
 eax_value = ql.reg.eax
 func = ql.loader.import_symbols[eax_value]
 func_dll = func["dll"]
 func_name = func["name"].decode("ascii")

 print(f"found {func_dll}.{func_name} at {hex(address)}")

This was easy! right? Next, we need to integrate our scipt with Ghidra to actually use the
information we got here. This will help us to see extracted API names inside Ghidra.

Integrating Qiling with Ghidra

As you probably know Ghidra uses Jython and Jython only supports Python version 2 but
Qiling is based on Python version 3. I found an interesting project called ghidra_bridge
link! that helps us solve this problem.

So Ghidra Bridge is an effort to sidestep that problem - instead of being stuck in
Jython, set up an RPC proxy for Python objects, so we can call into Ghidra/Jython-land
to get the data we need, then bring it back to a more up-to-date Python with all the
packages you need to do your work.

After installing ghidra_bridge you can find an example inside the installation directory
called example_py3_from_ghidra_bridge.py . By opening this file we will have an idea
about how to write scripts based on ghidra_bridge . Let’s dissect it.

Most scripts should use this minimal template:

https://github.com/justfoxing/ghidra_bridge

10/13

def run_script(server_host, server_port):

 import ghidra_bridge
 with ghidra_bridge.GhidraBridge(namespace=globals(), response_timeout=500):
 pass

if __name__ == "__main__":

 in_ghidra = False
 try:
 import ghidra
 # we're in ghidra!
 in_ghidra = True
 except ModuleNotFoundError:
 # not ghidra
 pass

 if in_ghidra:
 import ghidra_bridge_server
 script_file = getSourceFile().getAbsolutePath()
 # spin up a ghidra_bridge_server and spawn the script in external python to
connect back to it

ghidra_bridge_server.GhidraBridgeServer.run_script_across_ghidra_bridge(script_file)
 else:
 # we're being run outside ghidra! (almost certainly from spawned by
run_script_across_ghidra_bridge())

 parser = argparse.ArgumentParser(
 description="py3 script that's expected to be called from ghidra with a
bridge")
 # the script needs to handle these command-line arguments and use them to
connect back to the ghidra server that spawned it
 parser.add_argument("--connect_to_host", type=str, required=False,
 default="127.0.0.1", help="IP to connect to the
ghidra_bridge server")
 parser.add_argument("--connect_to_port", type=int, required=True,
 help="Port to connect to the ghidra_bridge server")

 args = parser.parse_args()

 run_script(server_host=args.connect_to_host,
 server_port=args.connect_to_port)

We only need to focus on run_script() function. The other part is static and probably
there is no need to change. Only inside run_script() you are allowed to use Python 3
syntax and only here you are allowed to load Python 3 libraries (like Qiling). As you may
notice I added response_timeout to the GhidraBridge object and sets it’s value to 500
seconds. Why? because as we discussed earlier emulating is a time-consuming task and
emulating decryptor functions is likely more time-consuming because there is so much
instruction code that needs to be emulated. So we need to set response_timeout to
prevent any timeout-related errors.

11/13

Leaving aside the base template, we can now write our Qiling code inside run_script() .

def run_script(server_host, server_port):
 from qiling import Qiling

 import ghidra_bridge
 with ghidra_bridge.GhidraBridge(namespace=globals(), response_timeout=500):

 ql = Qiling(["/home/lopqto/w/automated/samples/netwalker.exe"],
"/home/lopqto/w/automated/rootfs/x86_windows", output = "debug")
 ql.hook_code(extract_eax)
 ql.run(begin=0x0040c1a0, end=0x0040c1a5)

Back to the extract_eax() function, we need to integrate it with Ghidra and add extracted
API names as a comment into Ghidra. To add a comment from a script first of all we need an
address (location). We have the address value from Qiling but we need to convert this
value to Ghidra’s Address type.

To do this we need memory.blocks object from currentProgram API. But there is a
challenge here. currentProgram API only is accessible inside run_script() . But we
need this API inside extract_eax() callback. There is a cool trick to handle this situation.
You need to pass things around with ql object like below:

ql.target_block = currentProgram.memory.blocks[0]

Now we can access to ql.target_block inside extract_eax() . target_block
(memory.blocks[0]) points to the PE entrypoint at 0x00400000 . to convert address to
Address type we need to calculate offset and do something like this:

target_address = ql.target_block.getStart()
target_address = target_address.add(address - 0x00400000)

Now we have our target_address so we need one more step. accessing comment API is
similar to above. First we need getListring() object:

ql.listing = currentProgram.getListing()

And to add a comment we can do:

codeUnit = ql.listing.getCodeUnitAt(target_address)
comment_message = "{}.{}".format(func_dll, func_name)
codeUnit.setComment(codeUnit.PRE_COMMENT, comment_message)

Full source code for extract_eax() will be this:

12/13

def extract_eax(ql, address, size):
 buf = ql.mem.read(address, size)
 if "8941" in buf.hex(): # dword ptr [ECX + hex],EAX

 eax_value = ql.reg.eax
 func = ql.loader.import_symbols[eax_value]
 func_dll = func["dll"]
 func_name = func["name"].decode("ascii")
 target_address = ql.target_block.getStart()
 target_address = target_address.add(address - 0x00400000)
 codeUnit = ql.listing.getCodeUnitAt(target_address)
 comment = "{}.{}".format(func_dll, func_name)
 codeUnit.setComment(codeUnit.PRE_COMMENT, comment)

Now we have a Ghidra script that will use Python3 to run samples trough Qiling and extract
dynamic resolved function names and comment them into Ghidra. See the final result:

And we are done. :)

Tips and tricks

Two tricks helped me to make this script. First of all, tracing the binary and printing assembly
instructions can help a lot while debugging source!:

https://github.com/qilingframework/qiling/blob/master/examples/hello_x8664_linux_disasm.py

13/13

md = Cs(CS_ARCH_X86, CS_MODE_64)

def print_asm(ql, address, size):
 buf = ql.mem.read(address, size)
 for i in md.disasm(buf, address):
 print(":: 0x%x:\t%s\t%s" %(i.address, i.mnemonic, i.op_str))

ql.hook_code(print_asm)

You can compare emulation result with your disassembler to debug your program.

The second tip is when you try to run a time-consuming script and write something back to
Ghidra (like adding a comment) you may face with an error like this:

ERROR (BackgroundCommandTask) Command Failure: An unexpected error occurred while
processing the command: Auto Analysis java.lang.RuntimeException: Timed-out waiting
to run a Swing task--potential deadlock!

It’s because java closed the file and to solve this problem you need to increase timeout.
Open the file in ghidra/support/launch.properties and add this line:

VMARGS=-Dghidra.util.Swing.timeout.seconds=3600

Conclusion

The idea described in this article can be extended and used to analyze any other malware
families that dynamically resolve imports. It’s not an ultimate general solution and you need
to change things a little bit to match it against your target binary. I tried to explain my mindset
behind the scene as much as possible to help you in this process. Hope this post was
helpful.

Don’t hesitate to ping me if there is something wrong or if you want to discuss about the post.
I dropped the final script and the malware sample here!.

Read more

https://github.com/lopqto/YaraRules/tree/master/malwares/netwalker

