
1/13

BitRAT pt. 2: Hidden Browser, SOCKS5 proxy, and
UnknownProducts Unmasked

krabsonsecurity.com/2020/09/04/bitrat-pt-2-hidden-browser-socks5-proxy-and-unknownproducts-unmasked/

Posted on September 4, 2020
Pt. 1 of the BitRAT series.

During my initial analysis, there were several features in BitRAT that I did not have the
opportunity to fully analyze. As such, I thought another post is merited to explore these
functionalities further. In addition to this, analysis of the binary revealed strong similarities
and shared code with the Revcode malware. We could from this infer that BitRAT has a
significant relationship to Revcode, whether it is the developers sharing code or the
developers being in fact the same person. The information leading to this assessment will
be explored in detail in the last section of the post.

Hidden Browser

I did not explore the Hidden Browser feature in much detail initially, as I assumed it would
merely be an interface built on top of TinyNuke’s HVNC. However, this assumption was
incorrect. The Hidden Browser (command 65-6E) is implemented separately and from
scratch. The first command (0x65) calls the remote browser initializer (004B6A64), which is
a considerably large function due to the heavy use of STL, Boost, and string obfuscation.
Due to this, screenshots will be combined and cut to fit in the article. First, it generates a
random 16-character string, which it then uses to create a named desktop.

Then, it tries to obtain the default installed browser by querying the file association for the
“.html” extension.

https://krabsonsecurity.com/2020/09/04/bitrat-pt-2-hidden-browser-socks5-proxy-and-unknownproducts-unmasked/
https://krabsonsecurity.com/2020/09/04/
https://krabsonsecurity.com/2020/08/22/bitrat-the-latest-in-copy-pasted-malware-by-incompetent-developers/

2/13

Currently, only Chrome is supported and the function returns prematurely if another browser
is set as the default .html handler. BitRAT then checks to see if Chrome is already running.
If this is the case, it creates a new browser profile in the temp directory, otherwise it uses
the default profile.

It then appends some parameters disabling certain chrome features as is typical of HVNC
browsers, creates the process and saves the browser window’s handle.

3/13

After this, the current thread enters a loop where it continuously screenshots the current
browser and sends it back to the C2 server. The screenshot function makes use of BitBlt
and GDI to take the screenshot, then convert it to a JPEG image and passes it back.

4/13

Parts of the image capturing code

Conversion to JPEG

Overall, the hidden browser is essentially another fairly basic HVNC implementation. For
those not familiar with how HVNCs work, MalwareTech’s post is a fairly simple introduction
that should clear things up.

https://www.malwaretech.com/2015/09/hidden-vnc-for-beginners.html

5/13

SOCKS5 Proxy

For interfacing with the tor service that is dropped to disk, BitRAT makes use of the
SOCKS5 library “socks5-cpp“. Interestingly, around 3 years ago a Steemit post was made
describing how to use this specific library for sending traffic through Tor, this is presumably
where the idea was taken from.

https://github.com/NuclearC/socks5-cpp
https://steemit.com/tor/@scriptkid/tor-as-a-socks5-proxy-in-your-c-applications-with-socks5-cpp

6/13

UnknownProducts, BitRAT, and the link to Revcode

A few days after I posted my initial article on BitRAT, @tildedennis noted that BitRAT is quite
similar to the Revcode malware. Though I didn’t see it for a few days due to Twitter filtering
out the notification, I was immediately interested for several reasons:

1. I’ve dealt with Revcode before and have identified its author as Alex Yücel, notorious
for developing the Blackshades malware.

2. I knew that at one point, Revcode had a C++ payload that used Boost; however, I
have not until now had a sample of this to look at and have only reverse-engineered
the VB variant of it. The usage of Boost was shortly removed after it was
implemented.

3. UnknownProducts’ timezone is GMT+2, which matches Sweden. He previously
pretended to be Russian, however this is utterly unconvincing for various reasons.

Given this reliable indicator that the two are possibly linked, a comparison between a
sample of Revcode’s Boost variant
(be535a8c325e4eec17bbc63d813f715d2c8af9fd23901135046fbc5c187aabb2) and BitRAT
is in order. The sample was trivial to unpack, the packer stub was built on 18 Jan 2019
05:29:34 UTC and the Revcode file inside was built on 20 Dec 2018 03:02:36 UTC.

https://twitter.com/tildedennis/status/1297903493223784451
https://app.any.run/tasks/c69f9dc3-8fb5-4d50-82d4-237a9d7c5ffc/

7/13

RunPE

What first caught my eye when reverse engineering BitRAT’s RunPE is how injection APIs
are imported statically (refer to the previous post) and how a function parameter controls
the return value.

While the rest of the RunPE was copy-pasted, I could not find any public RunPE
implementation that has such an option for the return value or even one that references
dwProcessId. As such, I immediately searched for references to injection-relevant APIs
within Revcode and immediately found a virtually identical function with the same method
for controlling the return value.

The rest of the code was virtually identical, with the only significant difference being that
BitRAT encrypts the “NtUnmapViewOfSection” string.

8/13

RunPE in BitRAT

RunPE in Revcode

Keylogger

BitRAT’s keylogger hook callback (4ABC8D) decodes key data into human-readable strings.
For example, the strings “{NUMPAD_2}”, “{NUMPAD_5}”, “{NUMPAD_7}”, “{F12}” are used
to represent such keys. The same strings are used in Revcode. In fact, the entire keyboard
hook function is identical.

9/13

Part of BitRAT’s keylogger callback

Part of Revcode’s keylogger callback

Service Manager function

The service manager shares identical strings such as “Boot Start,” “Win32 share process”,
“The service is stopped,” “The service is in the process of being stopped.” While these
strings are likely widely used elsewhere, they are referenced in the same manner and order.
Furthermore, a comparison of the control flow graph reveals that BitRAT’s service manager
only differs in complexity and length due to string encryption and SEH.

10/13

The flow graph of the service manager function. BitRAT is on the left, while Revcode is on the right.

Identical command handling mechanisms

A significant amount of command names are similar between the two malware. Both
abbreviates “process” as “prc”. Both do not abbreviate “webcam”. Furthermore, both
BitRAT and Revcode set up a table of command strings and command IDs the same way.
The command string gets passed to a function that returns a DWORD pointer, which is
dereferenced to set the command ID. The only difference between the two in the command
text and the lack of string encryption in Revcode.

BitRAT’s command list initialization

11/13

Revcode’s command list initialization

Audio recording

BitRAT and Revcode both use A. Riazi’s Voice Recording library for recording audio from
machines infected by it. The only difference is that in BitRAT the debugging strings are
stripped out while they are present inside Revcode.

CVoiceRecording::Record in BitRAT

https://www.codeproject.com/Articles/10138/Voice-Recording-Playing-back-using-simple-classes

12/13

CVoiceRecording::Record in Revcode

Other shared strings

Some tag strings presumably for formatting data for communication are common between
the two.

Decrypted BitRAT strings

13/13

Strings from the Revcode binary

Conclusion

Given the findings above, it should be fairly evident that BitRAT is a successor to Revcode’s
Boost payload. Sadly, UnknownProducts’ bid to remain unknown did not work out too well
due to the practice of code reuse. While it is possible that the relationship is based only on
code-sharing, the combination of the matching timezone makes this unlikely to be the case.
Revcode dropped around March 2019, and in April 2019, UnknownProducts posted the
initial development thread for BitRAT. The product was finally released in June, suggesting
that Revcode’s Boost and non-Boost codebase were split into two, one for sales as
Revcode and one for sales as BitRAT. This split was probably done to increase sales and
market presence and to allow the aggressive marketing of illicit features such as HVNCs
and remote browsers, which are meant exclusively for fraud.

View Comments ...

