Machine learning from idea to reality: a PowerShell case
study

¥ blog.fox-it.com/2020/09/02/machine-learning-from-idea-to-reality-a-powershell-case-study/

September 2, 2020

Detecting both ‘offensive’ and obfuscated PowerShell scripts in Splunk using
Windows Event Log 4104

Author: Joost Jansen

This blog provides a ‘look behind the scenes’ at the RIFT Data Science team and describes
the process of moving from the need or an idea for research towards models that can be
used in practice. More specifically, how known and unknown PowerShell threats can be
detected using Windows event log 4104. In this case study it is shown how research into
detecting offensive (with the term ‘offensive’ used in the context of ‘offensive security’) and
obfuscated PowerShell scripts led to models that can be used in a real-time environment.

About the Research and Intelligence Fusion Team (RIFT):

RIFT leverages our strategic analysis, data science, and threat hunting capabilities to create
actionable threat intelligence, ranging from IOCs and detection capabilities to strategic
reports on tomorrow’s threat landscape. Cyber security is an arms race where both attackers
and defenders continually update and improve their tools and ways of working. To ensure
that our managed services remain effective against the latest threats, NCC Group operates a
Global Fusion Center with Fox-IT at its core. This multidisciplinary team converts our leading
cyber threat intelligence into powerful detection strategies.

Introduction to PowerShell

PowerShell plays a huge role in a lot of incidents that are analyzed by Fox-IT. During the
compromise of a Windows environment almost all actors use PowerShell in at least one part
of their attack, as illustrated by the vast list of actors linked to this MITRE technique [1].
PowerShell code is most frequently used for reconnaissance, lateral movement and/or C2

1/6

https://blog.fox-it.com/2020/09/02/machine-learning-from-idea-to-reality-a-powershell-case-study/

traffic. It lends itself to these purposes, as the PowerShell cmdlets are well-integrated with
the Windows operating system and it is installed along with Windows in most recent
versions.

The strength of PowerShell can be illustrated with the following example. Consider the
privilege-escalation enumeration script PowerUp.ps1 [2]. Although the script itself consists of
4010 lines, it can simply be downloaded and invoked using:

S C:\Users\Joost Jansen> powershell.exe

In this case, the script won’t even touch the disk as it's executed in memory. Since threat
actors are aware that there might be detection capabilities in place, they often encode or
obfuscate their code. For example, the command executed above can also be run base64-
encoded:

PS C:\Users\Joost Jansen> powershell.exe cABVAHCAZQBYAHMAaABlAGWAbAAUAGUAEABLA
CAALQBOAGBAUABYAGSAZgBpAGWAZQASACPASQBUAHAACIQBRAEYAbWBYAGRAYQBOACAAT EBVAGAAZQASACRARQBA
AGUAYwWB1AHQA2QBVAGAAUABVAGWAaQB jAHKAIABCAHkACABhAHMACWARACOAQWBYAGRADQBhAGAAZAAZACIAAQB
1AHgATAACACEATgB1AHCALQBPAGIAagBlAGMAAAEAFMAEQBZAHQAZQBTACAATgB1AHQAL gBXAGUAYEBDAGWAAQ
B1AG4AdAAPACAARABVAHCAbgBsAGBAYQBKAFMADABYAGKAbgBnACgAIWBOAHQAdABWADOALWAVAHEAL gBAACAAE
AAUAHEALWBQAGBAdWBLAHIAVQBWACAACABZADEAIWAPACKAOWAEAEKAbEB2AGBAaWB1ACOAQQBSAGWAQWEBOAGUA
YwBrAHMAIAATAEZAVABNAEWALU 2

which has the exact same result.

Using tools like Invoke-Obfuscation [3], the command and the script itself can be obfuscated
even further. For example, the following code snippet from PowerUp.ps1

set-Item Enw:Pat select-Object -ExpardProperty value | ForEach-object [$_.split(";') } | where-Dbject {§ d (§ e "'} | FerEach-Dbject {
iTa

$TargetPath | Ger-we ylepath -LiteralPaths | where-Object {5 md o § Shu11) —and (5 ModifiablePath -rne $40117 -and (_.ModifiablePath. Tring)

in SModifidable

lodifiableFath 11y {
Al -Hember Mot i

i
erty “EPATHE® 1

These well-known offensive PowerShell scripts can already be detected by
signatures, but small modifications on the right place will circumvent the detection. Moreover,
these signatures might not detect new versions of the known offensive scripts, let alone
detect new techniques. Therefore, there was an urge to create models to detect offensive
PowerShell scripts regardless of their obfuscation level, as illustrated in Table 1.

obfuscatedmode! Table 1: Detection of different
signatures & offensivemodel

malicious PowerShell scripts

2/6

Don’t reinvent the wheel

As we don’t want to re-invent the wheel, a literature study revealed fellow security companies
had already performed research on this subject [4, 5], which was a great starting point for
this research. As we prefer easily explainable classification models over complex ones (e.g.
the neural networks used in the previous research) and obviously faster models over slower
ones, not all parts of the research were applicable. However, large parts of the data
gathering & pre-processing phase were reused while the actual features and classification
method were changed.

Since detecting offensive & obfuscated PowerShell scripts are separate problems, they
require separate training data. For the offensive training data, PowerShell scripts embedded
in “known bad” GitHub repositories were scraped. For the obfuscated training data, parts of
the Revoke-Obfuscation training data set were used [6]. An equal amount of legitimate
(‘known not-obfuscated’ and “known not-offensive”) scripts were added to the training sets
(retrieved from the PowerShell Gallery [7]) resulting in the training sets listed in Table 2.

offensivemodel 1615 1615 3230 obfuscatedmode/ 4314 4314 8628
Table 2: Training set sizes

To keep things simple and explainable the decision was made to base the initial model on
token (offensive) and character (obfuscated) percentages. This did require some
preprocessing of the scripts (e.g. removing the comments), calculating the features and in
the case of the offensive scripts, tokenization of the PowerShell scripts. Figures 1 & 2
illustrate how some characters and tokens are unevenly distributed among the training sets.

= Known not obfuscabed
T.0% m— Enown abfEcabed

ANEIAGE DCOUENDE I SITIpEE
u - - -

1 A 0 1 { ; + e t r a i 4] n 5
Figure 1: Average occurrence of several ASCII characters in obfuscated and not-obfuscated
scripts

3/6

d}@ & s Q@“ Qe;d 0&1}“ &@*“ & a‘“@(;‘ Iy g‘,ﬁ
o &

Figure 2: Average occurrence of several tokens in offensive and not-offensive scripts

The percentages were then used as features for a supervised classification model to train,
along with some additional features based on known bad tokens (e.g. base64, iex and
convert) and several regular expression patterns. Afterwards all features and labels were fed
to our SupervisedClassification helper class, which is used in many of our projects to
standardize the process of (synthetic) sampling of training data, DataFrame transformations,
model selection and several other tasks. For both models, the SupervisedClassification class
selected the Random Forest algorithm for the classifying task. Figure 3 summarizes the
workflow for the obfuscated PowerShell model.

ObfuscatedPowershellModel

Obfuscated training set ScriptPreprocess
n=8628

FeatureExtractor

SupervisedClassification

E

obfuscatedmodel

Train Predict Save

Figure 3: High-level overview of the training process for the obfuscation model

Usage in practice

Since these models were exported, they can be used for multiple purposes by loading the
models in Python, feeding PowerShell scripts to it and observe the predicted outcomes. In
this example, Splunk was chosen as the platform to use this model because it is part of our
Managed Detection & Response service and because of Splunk’s ability to easily run custom
Python commands.

Windows is able to log blocks of PowerShell code as it is executed, called ‘PowerShell Script
Block Logging’ which can be enabled via GPO or manual registry changes. The logs
(identified by Windows Event ID 4101) can then be piped to a Splunk custom command
Reconstruct4101Logging, which will process the script blocks back into the format the model

4/6

was trained on. Afterwards, the reconstructed script is piped into e.g. the
ObfuscatedPowershell custom command, which will load the pre-trained model, predict the
probabilities for the scripts being obfuscated and returns these predictions back to Splunk.
This is shown in Figure 4.

=

obfuscatedmaodel

Obfuscated Powers hellModel

| index=windows EventiD=4101 | Reconstructd 104Lagging | ObfuscatedPowershell predict Message | where PS_prediction = 0.7 |

Figure 4: Usage of the pre-trained model in Splunk along with the corresponding query

Performance

Back in Splunk some additional tuning can be performed (such as setting the threshold for
predicting the positive class to 0.7) to reduce the amount of false positives. Using cross-
validation, a precision score of 0.94 was achieved with an F1 score of 0.9 for the obfuscated
PowerShell model. The performance of the offensive model is not yet as good as the
obfuscated model, but since there are many parameters to tune for this model we expect this
to improve in the foreseeable future. The confusion matrix for the obfuscated model is shown
in Table 3.

True False

Table 3: Confusion matrix
True 688 101
- False 47 778

Despite the fact that other studies achieve even higher scores, we believe that this relatively
simple and easy to understand model is a great first step, for which we can iteratively
improve the scores over time. To finish off, these models are included in our Splunk
Managed Detection Engine to check for offensive & obfuscated PowerShell scripts on a
regular interval.

Conclusion and recommendation

PowerShell, despite being a legitimate and very useful tool, is frequently misused by threat
actors for various malicious purposes. Using static signatures, well-known bad scripts can be
detected, but small modifications may cause these signatures to be circumvented. To detect
modified and/or new PowerShell scripts and techniques, more and better generic models
should be researched and eventually be deployed in real-time log monitoring environments.
PowerShell logging (including but not limited to the Windows Event Logs with ID 4104) can
be used as input for these models. The recommendation is therefore to enable the

5/6

PowerShell logging in your organization, at least at the most important endpoints or servers.
This recommendation, among others, was already present in our whitepaper on ‘Managing
PowerShell in a modern corporate environment’ [8] back in 2017 and remains very relevant
to this day. Additional information on other defensive measures that can be put into place
can also be found in the whitepaper.

References

[1] https://attack.mitre.org/techniques/T1059/001/

[2] https://github.com/PowerShellMafia/PowerSploit/blob/master/Privesc/PowerUp.ps1

[3] https://github.com/danielbohannon/Invoke-Obfuscation

[4] https://arxiv.org/pdf/1905.09538.pdf

[5] https://www.fireeye.com/blog/threat-research/2018/07/malicious-powershell-detection-via-

machine-learning.html

[6] https://github.com/danielbohannon/Revoke-Obfuscation/tree/master/DataScience

[7] https://www.powershellgallery.com/

[8] https://www.nccgroup.com/uk/our-research/managing-powershell-in-a-modern-corporate-
environment/

6/6

https://attack.mitre.org/techniques/T1059/001/
https://github.com/PowerShellMafia/PowerSploit/blob/master/Privesc/PowerUp.ps1
https://github.com/danielbohannon/Invoke-Obfuscation
https://arxiv.org/pdf/1905.09538.pdf
https://www.fireeye.com/blog/threat-research/2018/07/malicious-powershell-detection-via-machine-learning.html
https://github.com/danielbohannon/Revoke-Obfuscation/tree/master/DataScience
https://www.powershellgallery.com/
https://www.nccgroup.com/uk/our-research/managing-powershell-in-a-modern-corporate-environment/

