
1/20

September 1, 2020

Epic Manchego – atypical maldoc delivery brings flurry of
infostealers

blog.nviso.eu/2020/09/01/epic-manchego-atypical-maldoc-delivery-brings-flurry-of-infostealers/

In July 2020, NVISO detected a set of malicious Excel documents, also known as “maldocs”,
that deliver malware through VBA-activated spreadsheets. While the malicious VBA code
and the dropped payloads were something we had seen before, it was the specific way in
which the Excel documents themselves were created that caught our attention.

The creators of the malicious Excel documents used a technique that allows them to create
macro-laden Excel workbooks, without actually using Microsoft Office. As a side effect of this
particular way of working, the detection rate for these documents is typically lower than for
standard maldocs.

This blog post provides an overview of how these malicious documents came to be. In
addition, it briefly describes the observed payloads and finally closes with recommendations
as well as indicators of compromise to help defend your organization from such attacks.

Key Findings (TL;DR)

The malicious Microsoft Office documents are created using the EPPlus software
rather than Microsoft Office Excel, these documents may fly under the radar as it differs
from a typical Excel document;
NVISO assesses with medium confidence that this campaign is delivered by a single
threat actor based on the limited number of documents uploaded to services such as
VirusTotal, and the similarities in payloads delivery throughout this campaign;
The payloads that have been observed up to the date of the release of this post, have
been, for the most part, so called information stealers with the intention of harvesting
passwords from browsers, email clients, etc.;

https://blog.nviso.eu/2020/09/01/epic-manchego-atypical-maldoc-delivery-brings-flurry-of-infostealers/

2/20

The payloads stemming from these documents have evolved only slightly in terms of
obfuscation and masquerading. This is another indication of a single actor who is
slowly evolving their technical prowess.

Analysis

The analysis section below is divided in two parts and refers to a specific link in the infection
chain.

Malicious document analysis

In an earlier blog post, we wrote about “VBA Purging”[1], which is a technique to remove
compiled VBA code from VBA projects. We were interested to see if any malicious
documents found in-the-wild were adopting this technique (it lowers the initial detection rate
of antivirus products). This is how we stumbled upon a set of peculiar malicious documents.

At first, we thought they were created with Excel, and were then VBA purged. But closer
examination leads us to believe that these documents are created with a .NET library that
creates Office Open XML (OOXML) spreadsheets. As stated in our VBA Purging blog post,
Office documents can also lack compiled VBA code when they are created with tools that are
totally independent from Microsoft Office. EPPlus is such a tool. We are familiar with this
.NET library, as we have been using it since a couple of years to create malicious documents
(“maldocs”) for our red team and penetration testers.

When we noticed that the maldocs had no compiled code, and were also missing Office
metadata, we quickly thought about EPPlus. This library also creates OOXML files without
compiled VBA code and without Office metadata.

The OOXML file format is an Open Packaging Conventions (OPC) format: a ZIP container
with mainly XML files, and possibly binary files (like pictures). It was first introduced by
Microsoft with the release of Office 2007. OOXML spreadsheets use extension .xlsx and
.xlsm (for spreadsheets with macros).

When a VBA project is created with EPPlus, it does not contain compiled VBA code. EPPlus
has no methods to create compiled code: the algorithms to create compiled VBA code are
proprietary to Microsoft.

The very first malicious document we detected was created on 22 of June 2020, and since
then 200+ malicious documents were found over a period of 2 months. The actor has
increased their activity in the last weeks, as now we see more than 10 new malicious
documents on some days.

nd

https://blog.nviso.eu/2020/02/25/evidence-of-vba-purging-found-in-malicious-documents/

3/20

Figure 1 – Unique maldocs observed per day

The maldocs discovered over the course of two months have many properties that are quite
different from the properties of documents created with Microsoft Office. We believe this is
the case because they are created with a tool independent from Microsoft Excel. Although
we don’t have a copy of the exact tool used by the threat actor to create these malicious
documents, the malicious documents created by this tool have many properties that
convince us that they were created with the aforementioned EPPlus software.

Some of EPPlus’ properties include, but are not limited to:

Powerful and versatile library: not only can it create spreadsheets containing a VBA
project, but that project can also be password protected and/or digitally signed. It does
not rely on Microsoft Office. It can also run on Mono (cross platform, open-source
.NET).
OOXML files created with EPPlus have some properties that distinguish them from
OOXML files created with Excel. Here is an overview:

ZIP Date: every file included in a ZIP file has a timestamp (DOSDATE and
DOSTIME field in the ZIPFILE record). For documents created (or edited) with
Microsoft Office, this timestamp is always 1980-01-01 00:00:00 (0x0021 for
DOSDATE and 0x0000 for DOSTIME). OOXML files created with EPPlus have a
timestamp that corresponds to the creation time of the document. Usually, that
timestamp is the same for all files inside the OOXML files, but due to execution
delays, there can be a difference of 2 seconds between timestamp. 2 seconds is
the resolution of the DOSTIME format.

4/20

Figure 2 – DOSTIME difference (left: EPPlus created file)

Extra ZIP records: a typical ZIP file is composed of ZIP file records (magic 50 4B 03
04) with metadata for the file, and the (compressed) file content. Then there are ZIP
directory entries (magic 50 4B 01 02) followed by a ZIP end-of-directory record (magic
50 4B 05 06). Microsoft Office creates OOXML files containing these 3 ZIP record
types. EPPlus creates OOXML files containing 4 ZIP records: it also includes a ZIP
data description record (magic 50 4B 07 08) after each ZIP file record.

Figure 3 – Extra ZIP records (left: EPPlus created file)

Missing Office document metadata: an OOXML document created with Microsoft Office
contains metadata (author, title, …). This metadata is stored inside XML files found
inside the docProps folder. By default, documents created with EPPlus don’t have
metadata: there is no docProps folder inside the ZIP container.

5/20

Figure 4 – Missing metadata (left: EPPlus created file)

VBA Purged: OOXML files with a VBA project created with Microsoft Office contain an
OLE file (vbaProject.bin) with streams containing the compiled VBA code and the
compressed VBA source code. Documents created with EPPlus do not contain
compiled VBA code, only compressed VBA source code. This means that:

The module streams only contain compressed VBA code
There are no SRP streams (SRP streams contain implementation-specific and
version-dependent compile code, theire name starts with __SRP_)
The _VBA_PROJECT stream does not contain compiled VBA code. In fact, the
content of the _VBA_PROJECT stream is hardcoded in the EPPlus source code:
it’s always CC 61 FF FF 00 00 00.

Figure 5 – Hardcoded stream content (left: EPPlus created file)

In addition to the above, we have also observed some properties of the VBA source code
that hints at the use of a creation tool based on a library like EPPlus.

6/20

There are a couple of variants to the VBA source code used by the actor (some variants use
PowerShell to download the payload, others use pure VBA code). But all these variants
contain a call to a loader function with one argument, a string with the URL (either BASE64
or hexadecimal encoded). Like this (hexadecimal example):

Loader”68 74 74 70 …”

Do note that there is no space character between the function name and the argument: there
is no space between Loader and ”68 74 74 70 …”.

This is an indication that the VBA code was not entered through the VBA EDI in Office: when
you type a statement like this, without space character, the VBA EDI will automatically add a
space character for you (even if you copy/paste the code). The absence of this space
character divulges that this code was not entered through the VBA EDI, but likely via a library
such as EPPlus.

To illustrate these differences in properties, we show examples with one of our internal tools
(ExcelVBA) using the EPPlus library. We create a vba.xlsm file with the vba code in text file
vba.txt using our tool ExcelVBA, and show some of its properties.:

7/20

8/20

Figure 6 – NVISO created XLSM file using the EPPlus library

Figure 7 – Running oledump.py reveals this document was created using the EPPlus library

Some of the malicious documents contain objects that clearly have been created with
EPPlus, using some of the example code found on the EPPlus Wiki. We illustrate this with
the following example (the first document in this campaign):

Filename: Scan Order List.xlsm
 MD5: 8857fae198acd87f7581c7ef7227c34d

 SHA256: 8a863b5f154e1ddba695453fdd0f5b83d9d555bae6cf377963c9009c9fa6c9be
 File Size: 5.77 KB (5911 bytes)

 Earliest Contents Modification: 2020-06-22 14:01:46

This document contains a drawing1.xml object (a rounded rectangle) with this name:
name=”VBASampleRect”.

Figure 8 – zipdump of maldoc

9/20

Figure 9 – Selecting the drawing1.xml object reveals the name

This was created with sample code found on the EPPlus Wiki[2]:

Figure 10 – EPPlus sample code, clearly showing the similarities

Noteworthy is that all maldocs we observed have their VBA project protected with a
password. It is interesting to note that the VBA code itself is not encoded/encrypted, it is
stored in cleartext (although compressed) [3]. When a document with a password protected

https://github.com/EPPlusSoftware/EPPlus/wiki/VBA
https://blog.didierstevens.com/2020/07/20/cracking-vba-project-passwords/

10/20

VBA project is opened, the VBA macros will execute without the password: the user does not
need to provide the password. The password is only required to view the VBA project inside
the VBA IDE (Integrated Development Environment):

Figure 11 – Password prompt for viewing the VBA project

We were not able to recover these passwords. We used John the Ripper with the rockyou.txt
password list[4], and Hashcat with a small ASCII brute-force attack.

Although each malicious document is unique with its own VBA code, with more than 200
samples analyzed to date, we can generalize and abstract all this VBA code to just a handful
of templates. The VBA code will either use PowerShell or ActiveX objects to download the
payload. The different strings are encoded using either hexadecimal, BASE64 or XOR-
encoding; or a combination of these encodings. A Yara rule to detect these maldocs is
provided at the end of this blog post for identification and detection purposes.

Payload analysis

As mentioned in the previous section, via the malicious VBA code, a second-stage payload
is downloaded from various websites. Each second-stage executable created by its
respective malicious document acts as dropper for the final payload. In order to thwart
detection mechanisms such as antivirus solutions, a variety of obfuscation techniques are
leveraged which are however not advanced enough to hide the malicious intent. The
infrastructure used by the threat actor appears to mainly comprise compromised websites.

https://www.kaggle.com/wjburns/common-password-list-rockyoutxt

11/20

Popular antivirus solutions such as those listed on VirusTotal, shown in Figure 12, commonly
identify the second-stage executables as “AgentTesla”. While leveraging VirusTotal for
malware identification is not an ideal method, it does display how simple obfuscation can
result in an incorrect classification. Throughout this analysis, we’ll explain how only few of
these popular detections turned out to be accurate.

Figure 12: VirusTotal “AgentTesla” mis-identification.

The different obfuscation techniques we observed outline a pattern common to all second-
stage executables of operation Epic Manchego. As can be observed in Figure 13, the
second stage will dynamically load a decryption DLL. This DLL component then proceeds to
extract additional settings and a third-stage payload before transferring the execution to the
final payload, typically an information stealer.

12/20

Figure 13: Operation Epic Manchego final stage delivery mechanism.

Although the above obfuscation pattern is common to all samples, we have observed an
evolution in its complexity as well as a wide variation in perhaps more opportunistic
techniques.

Early Variants Recent Variants

DLL Component
Obfuscation

Obfuscated base64
encoding

Empty fixed-size structures

Final Payload
Obfuscation

Single-PNG encoding Multi-BMP dictionary encoding

Opportunistic
Obfuscation

Name randomisation Run-time method resolving, Goto flow-
control, …

Table 1 – Variant comparison

13/20

A common factor of the operation’s second-stage samples is the usage of steganography to
obfuscate their malicious intent. Figure 14 identifies a partial configuration used in recent
variants where a dictionary of settings, including the final payload, is encoded into hundreds
of images as part of the second-stage’s embedded resources.

Figure 14: Partial dictionary encoded in a BMP image

The image itself is part of the following second-stage sample which has the following
properties:

Filename: crefgyu.exe
 MD5: 7D71F885128A27C00C4D72BF488CD7CC

 SHA256:
C40FA887BE0159016F3AFD43A3BDEC6D11078E19974B60028B93DEF1C2F95726

 File Size: 761 KB (779.776 bytes)
 Compilation Timestamp: 2020-03-09 16:39:33

Noteworthy is the likelihood that the obfuscation process is not built by the threat actors
themselves. A careful review of the second-stage steganography decoding routine uncovers
how most samples mistakenly contain the final payload twice. In the following representation
(Figure 15) of the loader’s configuration we can see that its payload is indeed duplicated.
The complexity of the second- and third-stage payloads furthermore tend to suggest the
operation involves different actors as the initial documents reflect a less experienced actor.

14/20

Throughout the multiple dictionary-based variants analyzed we furthermore noticed that,
regardless of the final payload, similar keys were used as part of the settings. All dictionaries
contained the final payload as “EpkVBztLXeSpKwe” while some, as seen in Figure 15, also
contained the same value as “PXcli.0.XdHg”. This suggests a possible builder for payload
delivery, which may be used by multiple actors.

Figure 15: Stage 2 decoded dictionary

Within the manually analyzed dataset of 30 distinct dictionary-based second stages, 19
unique final payloads were observed. From these, the “Azorult” stealer accounts for 50% of
the variant’s delivery (Figure 16). Other payloads include “AgentTesla”, “Formbook”, “Matiex”
and “njRat”, which are all well-documented already. Both “Azurult” and “njRAT” have a
noticeable reusage rate.

15/20

Figure 16: Dictionary-based payload classification and (re-)usage of samples with trimmed
hashes

Our analysis of droppers and respective payloads uncovered a common pattern in
obfuscation routines. While opportunistic obfuscation methods may evolve, the delivered
payloads remain part of a rather limited set of malware families.

Targeting

A small number of the malicious documents we retrieved from VirusTotal were uploaded
together with the phishing email itself. Analysis of these emails can shed some light on the
potential targets of this actor. Due to the limited number of source emails retrieved, it was not

16/20

possible to identify a clear pattern based on the victims. In the 6 emails we were able to
retrieve, recipients were in the medical equipment sector, aluminium sector, facility
management and a vendor for custom made press machines.

When looking into the sender domains, it appears most emails are sent from legitimate
companies. Having used the “Have I Been Pwned”[5] service to confirm if any of the email
addresses were known to be compromised, turned up with no results. This leaves us to
wonder whether the threat actor was able to leverage these accounts during an earlier
infection or whether a different party supplied them. Regardless of who compromised the
accounts, it appears the threat actor primarily uses legitimate corporate email accounts to
initiate the phishing campaign.

Looking at both sender and recipient, there doesn’t appear to be a pattern we can deduce to
identify potential new targets. There does not seem to be a specific sector targeted nor are
the sending domains affiliated with each other.

Both body (content) and subject of the emails relate to a more classic phishing scheme, for
example, a request to initiate business for which the attachment provides the ‘details’. An
overview of subjects observed can be seen below, note some subjects have been altered by
the respective mail gateways:

Re: Quotation required/
Quote volume and weight for preferred
*****SPAM***** FW:Offer_10044885_[companyname]_2_09_2020.xlsx*
[SUSPECTED SPAM] Alternatives for Request*
Purchase Order Details
Quotation Request

https://haveibeenpwned.com/

17/20

Figure 17 – Sample phishing email

This method of enticing users to open the attachments is nothing new and does not provide
a lot of additional information to pinpoint the campaign targeting any specific organisation or
verticals.

However, leveraging public submissions of the maldocs through VirusTotal, we clustered
over 200 documents, which allowed us to rank 27 countries by submission count without
differentiating between uploads possibly performed through VPNs. As shown in Figure 18,
areas such as the United States, Czech Republic, France, Germany, as well as China,
account for the majority of targeted regions.

Figure 18 – Geographical distribution of VT submissions

When analysing the initial documents for targeted regions, we primarily identified English,
Spanish, Chinese and Turkish language-based images.

18/20

Figure 19 – Maldoc content in Chinese, Turkish, Spanish and English respectively

Some images however contained an interesting detail: some of the document properties are
in Cyrillic, and this regardless of the image’s primary language.

Although the Cyrillic Word settings were observed in multiple images, a new maldoc detected
at time of writing this blog post piqued our interest, as it appears to be the first one to
explicitly impersonate a healthcare sector member (“Ohiohealth Hardin Memorial Hospital”),
as can be observed in Figure 20. Note also the settings as described above: СТРАНИЦА 1
ИЗ 1; which means page 1 of 1.

Figure 20 – Maldoc content impersonating “Ohiohealth Hardin Memorial Hospital” with
Cyrillic Word settings

This Microsoft Excel document has the following details:

Filename: 새로운 주문 _2608.xlsm (Korean: New order _2608.xlsm)
 MD5: 551b5dd7aff4ee07f98d11aac910e174

 SHA256: 45cab564386a568a4569d66f6781c6d0b06a9561ae4ac362f0e76a8abfede7bb
 File Size: 5.77 KB (5911 bytes)

 Earliest Contents Modification: 2020-06-22 14:01:46

While the template from said hospital may have been simply discovered on the web and
consequently used by the threat actor, this surprising change in modus operandi does
appear to align with the actor’s constant evolution observed since the start of tracking.

Assessment

19/20

Based on the analysis, NVISO assesses the following:

The threat actor observed has worked out a new method to create malicious Office
documents with a way to at least slightly reduce detection mechanisms;
The actor is likely experimenting and evolving its methodology in which malicious Office
documents are created, potentially automating the workflow;
While the targeting seems rather limited for now, it’s possible these first runs were
intended for testing rather than a full-fledged campaign;
Recent uptick in detections submitted to VirusTotal confirms the actor may be ramping
up their operations;
While the approach to create malicious documents is unique, the methodologies for
payload delivery as well as actual payloads are not, and should be stopped or detected
by modern technologies;
Of interest is a recent blog post published by Xavier Mertens on the SANS diary
Tracking A Malware Campaign Through VT[6]. It appears another security researcher
has also been tracking these documents, however, they have extracted the VBA code
from the maldocs and uploaded that portion. These templates relate to the PowerShell
way of downloading the next stage.

In conclusion, NVISO assesses this specific malicious Excel document creation technique is
likely to be observed more in the wild, albeit missed by email gateways or analysts, as
payload analysis is often considered more interesting. However, blocking and detection of
these types of novelties, such as the maldoc creation described in this blog, enables
organizations to detect and respond quicker in case an uptick or similar campaign occurs.
The recommendations section provides ruling and indicators as a means of detection.

Recommendations

Filter email attachments and emails sent from outside your organization;
Implement robust endpoint detect and respond defenses;
Create phishing awareness trainings and perform a phishing exercise.

YARA

We provide the following rule to implement in your detection mechanisms for use in further
hunting missions.

https://isc.sans.edu/forums/diary/Tracking+A+Malware+Campaign+Through+VT/26498/

20/20

rule xlsm_without_metadata_and_with_date {
 meta:
 description = "Identifies .xlsm files created with EPPlus"
 author = "NVISO (Didier Stevens)"
 date = "2020-07-12"
 reference = "http://blog.nviso.eu/2020/09/01/epic-manchego-atypical-maldoc-
delivery-brings-flurry-of-infostealers"
 tlp = "White"
 strings:
 $opc = "[Content_Types].xml"
 $ooxml = "xl/workbook.xml"
 $vba = "xl/vbaProject.bin"
 $meta1 = "docProps/core.xml"
 $meta2 = "docProps/app.xml"
 $timestamp = {50 4B 03 04 ?? ?? ?? ?? ?? ?? 00 00 21 00}
 condition:
 uint32be(0) == 0x504B0304 and ($opc and $ooxml and $vba)
 and not (any of ($meta*) and $timestamp)
}

This rule will match documents with VBA code created with EPPlus, even if they are not
malicious. We had only a couple of false positives with this rule (documents created with
other benign software), and quite some corrupt samples (incomplete ZIP files).

INDICATORS OF COMPROMISE (IOCs)

Indicators of compromise can be found on our Github page here.

MITRE ATT&CK MAPPING

Initial Access:
T1566.001 Phishing: Spearphishing Attachment

Execution:
T1204.002 User Execution: Malicious File

Defense Evasion:
T1140 Deobfuscate/Decode Files or Information
T1036.005 Masquerading: Match Legitimate Name or Location
T1027.001 Obfuscate Files or Information: Binary Padding
T1027.002 Obfuscate Files or Information: Software Packing
T1027.003 Obfuscate Files or Information: Steganography
T1055.001 Process Injection: DLL Injection
T1055.002 Process Injection: PE Injection
T1497.001 Virtualization/Sandbox Evasion: System Checks

Authors

This blog post was created based on the collaborative effort of :

https://github.com/NVISO-BE/nviso-cti/tree/master/Epic_Manchego_IOC

