An Exhaustively-Analyzed IDB for ComRAT v4

msreverseengineering.com/blog/2020/8/31/an-exhaustively-analyzed-idb-for-comrat-v4

September 1, 2020

| %

L

September 1, 2020 Rolf Rolles

This blog entry announces the release of an exhaustive analysis of ComRAT v4. You can
find the IDBs here.

More specifically, an IDB for the sample with hash
0139818441431C72A1935E7F740A1CC458A63452, which was mentioned in the ESET
report (see especially its attached PDF), and which is available online on Hybrid Analysis.
All of the analysis has been performed in Hex-Rays 64-bit, so the results will be less
interesting to IDA users who do not own Hex-Rays 64-bit. That is to say, if you open the
IDB, you should definitely use Hex-Rays to view the function decompilations, as that is
where all of the naming and commenting has taken place. It is rich with detail, in
comparison to the disassembly listing's barrenness.

This analysis took roughly six weeks of full-time work. | have spent the pandemic working
on a new training class on C++ reverse engineering; part of the preparation includes large-
scale analysis of C++ programs. As such, ESET's report of ComRAT's use of C++ caught
my eye. ComRAT has a beautiful architecture, and many sophisticated components, all of
which | believe deserve a detailed report unto themselves. | had begun writing such a
report, but decided that it was side-tracking me from my ultimate goals with my new training
class. Hence, | had decided to wait until the class was ready, and release a collection of
reports on the software architectures of C++ malware families (perhaps as a book) after |
was done. Thus, my write-up on ComRAT's architecture will have to wait. You can consider
this release, instead, as a supplement to the ESET report.

(Note that if you are interested in the forthcoming C++ training class, it probably will not be
available for roughly another year. More generally, remote public classes (where individual
students can sign up) are temporarily suspended; remote private classes (multiple students
on behalf of the same organization) are currently available. If you would like to be notified
when public classes become available, or when the C++ course is ready, please sign up on
our no-spam,_very low-volume,_course notification mailing list. (Click the button that says
"Provide your email to be notified of public course availability".))

(Note also that | have more analyses like this waiting to be released. FlawedGrace and
XAgent are ready; Kelihos is in progress. If you can provide me with a bundle of Careto
SGH samples, preferably Windows 64-bit, please get in touch.)

1/5

https://www.msreverseengineering.com/blog/2020/8/31/an-exhaustively-analyzed-idb-for-comrat-v4
http://10.10.0.46/blog?author=5111cf9ee4b0a36262da10df
https://github.com/RolfRolles/IDBs/tree/master/ComRAT%20v4
https://www.welivesecurity.com/2020/05/26/agentbtz-comratv4-ten-year-journey/
https://www.welivesecurity.com/wp-content/uploads/2020/05/ESET_Turla_ComRAT.pdf
https://www.hybrid-analysis.com/
http://10.10.0.46/training-classes

About the Analysis

This analysis was conducted purely statically, without access to RTTI, or any other form of
debug information. The only external information | had was the ESET report. | have reverse
engineered every function in the binary that is not part of the C++ standard library, and
some of those that are. To get an idea of what the sample looks like before and after
analysis, here's a screenshot of the binary freshly loaded into IDA on the left, versus the
analyzed one on the right. See if you can spot the difference:

[DA View-s [Elpseudococe s) [@ Hex View-1 [structur. [Enums 8 Imports (Fexports IDA View-A pseudocode® [[pseudocodeh E tocalTypes Functions window
239(// BEFORE ANY ANALYSIS ~| 253[/7 AFTER s1X WEEKS OF REVERSE ENGINEERING "
206| sub_180035800(v120, 31, v30, &Block); 254| FAT: &VFATL) VRegistrylogWiriter, vDiskPathToVFS, &VFATFSCryptoKey);
241| v32 = (const wchar_t *)FileName; 255| // Open or <reate the FAT16 image
242| if (FileName[3] >= (wchar_t *)8) 256 v33 = &FAT16FSAccessor.mDiskPathToFAT16File;

243 v32 = FileName[@]; 257| // Inlined wstring::c_str()

244| v33 = wfepen(v32, L'r+b"); 258| if (VFAT1EFSAccessor.mDiskPathToFAT16File. Myres >= 8)

245 if (v33 && (*(_QWORD *)FileName[4] = v33, (unsigned int)sub_l18e@35c3e(v128)) 259| v33 = vFAT16FSAccessor.mDiskPathToFAT16File._Bx._Ptr;

246 || (unsigned __int8)sub_180035A60(v126)) 266| // Open FAT16 file on disk

247| { 261| FpFatFS = wfopen(v33->_Bx. Buf, L'rib");

248 v126 = v120; 262| // If already present, call ::Init.

245| sub_180026730(v124, v120); 263| // Else, create file on the disk (which also calls ::Init).
250| if (vi2e) 264 if (FpFatFs 8& (VFAT1GFSAccessor.mFAT16MediaContext->fp = fpFatFs, FATIGFSAccessor::Init(&VFATIGFSAccesso
251 { 265| || FAT16FsA iCreateV ileOnDisk (& FATL sor))
252| if (w128) 266 {

253 267| vToplevel.pFSContainer = &VFAT16FSAccessor;

254 V35 = sub_1800295CO(v105, &v126); 268 // Initialize the file accessors

255 v36 = sub_180029660(v111, v35); 269| TopLevel::InitStorageAccessor(&vToplevel, & FAT16FSAccessor);
256 sub_180023F50(v124, v36); 276| if (vieplevel.pFSContainer)

257 v37 = v106; 271 {

258| if (vies) 272 // Swap out registry logger for a file logger

259) { 273 if (!vToplevel.Configuration.dwUseRegistrylogger)

260) if (|_InterlockedDecrement(v106 + 2)) 274 {

261 { 275 V36 = FAT16Logger::make_shared(8v96, & Toplevel.pFSContainer);
262| (**(void (__fastcall ***)(volatile signed __int32 *))v37)(v37); 276| v37 = LogWriter::make_shared(&v108, v36);

263 if (|_InterlockedDecrement(v37 + 3)) 277 TopLevel: :SwapVFSLegliriter(&vToplevel, v37);

264 (*(void (__fastcall **)(volatile signed __int32 *))(*(_QWORD *)v3] 278 v38 = v96._Rep;

265 279 // Decref shared_ptr<Abstractlogger>

266] 280) if (v96. _Rep)

267 } 281 {

268| } 282| if (!_InterlockedDecrement(&vS56._Rep->_Uses))

265 33 = sub_180006799(v127, 781548178i64); 283

276| sub_180006A30(v3Z); 284 v32->_Destrey(v38);

271 v39 = sub_180006790(v127, 1950081029i64); 285 if (!_InterlockedDecrement(&v35->_Weaks))

272| vae = *(_QWORD *)(v39 + 56); 286| v38->_Delete_this(v33);

273 if (vae) 287 }

274 288 }

275 vEs = 8 289) }

276| sub_18000BB4@(v42, 2i64, &v36, 4i64); 290

Although I believe that the IDB could probably be loaded in versions of IDA prior to 7.5, |
nevertheless recommend using IDA 7.5 to view it. The reason for that is because | have
made extensive use of 7.5's new "folders" feature to organize the functions and local types
windows, which | found massively useful for large-scale reverse engineering. Those two
windows have a nearly identical organization; if you were to dock the windows side-by-side,

you would see something like this:

Functions window, Local Types. B @ DA View-A Pseudocode-s Pseudocode-A
Functions window B & x [localTypes g &8 x
Function name # || Ordinal Name Size Sync Description ’*
Instructions Instructions
Logging Logaing
MSVC MSVC
Miscellaneous Miscellaneous
v || storage ~v || storage
v Accessors v Accessors
v FileAccessor v FileAccessor
v DiskFileAccessor v DiskFileAccessor
shared_ptr shared_ptr
DiskFileAccessor_AppendFile =] DiskFileAccessor 00000010 Auto struct _cppobj : FileAccessor §
[7] DiskFileAccessor_DeleteFile FAT 16FileAccessor
[7] DiskFileAccessor_GetFileSize FileAccessor
[7] DiskFileAccessor_ReadFile ~ || Filesystem
[7] DiskFileAccessor_WriteFile v || FATiEFSAccessor
FAT16Accessor 235 FAT16FSACcessor 00000058 Auto struct _cppobyj : FileSystemAccessor {stl_wstring mDiskPathToFAT16Flefat_io_lib_media_context “mFAT16Me
FileAccessor v FileSystemAccessor
v FileSystem 579 FileSystemAccessor _vtbl Auto struct _des ec(align(8)) {FileSystemAccessor *(_fastcall “VirtualDestructor)(FileSystemAccessor *Block bo
v || FAT16FSAccessor = ss0 FileSystemAccessor 00000020 Auto struct __cppobj {FileSystemAccessor_vtbl *_vftable /VFT*/:shared_ptr_LogWriter spLogWriter:FSErrorCodes.
FAT16FSAccessor_AppendFile = 572 FSErrorCodes_t 00000004 Auto enum {FS_INIT_OK = 0x2,FS_ERROR_INIT = Ox4,FS_ERROR_OPEN_READ = 0x5,FS_ERROR_COPY = 0x6FS_ERR,
FAT16FSAccessor_Constructor ~ | storageAccessor
FAT16FSAceessor_CopyFile map <StorageType shared_ptr<FileAccessor>>
FAT16FSAccessor_CreateDirectory Bl 259 StorageAccessor 00000030 Auto struct {map._ geType_shared_ptr_Fil r mMapStorageTyp essor;path mWorkingDirectory:
FAT16FSAccessor_CreateVFSDataFileOnDisk 1386 StorageType 00000004 Auto enum {Storage_Disk = 0x241 Storage_FAT16 = 0x242}
FAT16FSAceessor_DeleteFile Mocifications To fatio_lib
FAT16FSAccessor_Destructor String Encryption
FAT16FSAccessor_FormatAndMakeDirectories Third-Party
FAT16FSAccessor_Init Transport
FAT16FSAccessor_ListDirectoryContents utility
FAT16FSAceassor_ListDirectoryFiles [=kd locale_facet
FAT16FSAccessor_ListDirectorySubDirectories [EkE] exception
FAT16FSAccessor_MoveFile =k _Lockit
FAT16FSAccessor_ReadWholeFile B _Locinfo
FAT16FSAceessor_VirtualDestructor = 78 locale__Locimp
FAT16FSAccessor_WrapCreateDirectory (=] system_error
FAT16FSAccessor_WriteWholeFile B 90 vector_stl_wstring
Ba vector_stl_string
[=E=E MailConfiguration
Eos shared_ptr_obj_Instructi
7 @ 152 StateResult 00000004 1132 (RETURN_ERROR = 0x0,RETURN_SUCCESS = 01, NEXT_CHAR = 0x2)
FileSystemAccessor_VirtualDestructor B 391 FileSystemAccessor vtbl
~ || StorageAccessor E ss8 AsymmetricKeyCantain...
map <StorageType,shared_ptr <FileAccessors > = 508 RemoteAPIDescriptor
StorageAccessor_Constructor = 719 IMAGE_BASE_RELOCATI... 00000008 Auto typedef IMAGE_BASE_RELOCATION
StorageAccessor_Destructor El 720 _IMAGE _BASE RELOCAT... 00000008 struct {DWORD VirtualAddre ssDWORD SizeOfglock}

2/5

As a result of this analysis, | wrote many Hex-Rays plugins, and devised a number of
techniques in C++ reverse engineering that were new to me. Eventually, | will publish on
topics such as the following:

e A Hex-Rays plugin for navigating virtual function cross-references

Reverse engineering STL containers, the easy way

A Hex-Rays plugin for virtual inheritance

Tips for reverse engineering multiple inheritance

Automated creation of VTable structure types

Automation for detecting inlined functions, and the addition of stock comments

ComRAT uses a lot of C++ features; a mostly complete list follows. If you're interested in
learning how to reverse engineer C++ programs, you might do well to study how | analyzed
the parts of the binary that interact with them.

¢ Inheritance
e Polymorphism (virtual functions)
e Custom templates

e Multiple and virtual inheritance (due to iostreams)

3/5

e STL, listed in descending order of usage frequency:
o shared_ptr<T>
o vector<T>
o string
o wstring
o locale
o unique_ptr<T>
o wstringstream
o stringstream
o fstream
o list<T>
o map<K,V>
o regex
o wstring_convert

o random

Notes on the Sample

1. Although the use of Gmail as a covert channel was a major aspect of the ESET
report, | could not get my hands on any samples that had that feature. However, this
sample does contain some of the Gmail communication code -- the Gumbo library is
compiled into it, and the configuration in the virtual file system contains a "mail"
subdirectory, with similar entries to those in the ESET report. Perhaps that feature was
still in development, or was deliberately not compiled into my sample for whatever
reason.

2. One striking feature of the ESET report was that their sample had RTTI information
compiled into it, which provided the names of many of the classes used within
ComRAT. l.e., section 4.3 of the ESET report mentions specific class names, as
created by the ComRAT programmers. However, my sample had no such RTTI
information. Therefore, all of my analysis had to be done from scratch. | used the few
names provided in the report as a guide when creating my own.

4/5

3. To the extent | was able to verify their claims, everything in the ESET report is
accurate. There are a few minor technical details in my sample that were different, but
are barely worth mentioning, and might have legitimately changed between the
creation of my sample and the non-public one they analyzed.

5/5

