
1/6

Analysis of the latest wave of Emotet malicious
documents

inde.nz/blog/analysis-of-the-latest-wave-of-emotet-malicious-documents

In the first technical blog post from the Security Team, we're going to take a look at the latest
wave of Emotet from a specific angle: the downloader document (or maldoc).

Distributed as an attachment via malspam, the operators tend to play it fairly safely with the
range of lures they employ in emails - however they are still fairly advanced when compared
to other large scale campaigns. Over the past week we've observed a fairly even spread of
generic templates (e.g. shipping, invoices, scanned documents) and reply-to messages, with
more effort seemingly being made to appear more geographically relevant. Messages almost
always leverage the names of legitimate organisations and employees from the same region.
In the case of reply-to messages, email exfiltrated in past (or current) compromise is
responded to via another compromised account with a standard request to open the
attachment - though it's not uncommon to encounter messages that only have a signature.

https://www.inde.nz/blog/analysis-of-the-latest-wave-of-emotet-malicious-documents


2/6

The

latest document template, dubbed "Red Dawn", was first seen on 26th August NZT. It was at
about this time that we also saw the volume of Emotet mail hitting NZ customers significantly
ramp up. Emotet consists of three botnets known as Epoch 1, 2 and 3. In the most recent
wave, we have only observed NZ targeted by Epoch 1 and 2. While there are no notable
differences in documents between the 3, email templates can vary depending on which
botnet they come from and post-compromise behavior also differs.

As seen

above, the document requests for editing and content to be enabled to permit the macro to

https://twitter.com/Cryptolaemus1/status/1298482483986669568


3/6

execute. Upon execution, the Document_load() function is invoked, which calls a function in
a custom form.

At first glance the function appears to be

rather complex, however after following the code it becomes apparent that klEP6Sq and
duFdpjP83 do absolutely nothing other than fill space. After each pairing of these variable
declarations are commands that serve as the functional portion of the script (highlighted with
breakpoints). For example, here an obfuscated string is declared as the variable that begins
with "Jcu" which is then passed to the deobfuscation function (more on that in a moment).
This is used to define the Win32 Process object that will later be used to launch PowerShell.

Similar

to the above, another function takes the value of the Control Tip for a tab on the form and
passes it to the same deobfuscation function. It is the output of this function that forms the
PowerShell command that retrieves and executes the Emotet payload.

 

The

deobfuscation function turns out to be fairly basic:

Takes the input string and saves it as a variable.
Splits the string into an array, defining a series of alphanumeric characters and
parentheses as the separator.
Re-joins the output of the array to form the output of the function.



4/6

While

basic, doing this by hand would be time consuming, so let's automate it with Python. olevba
is used to extract the ControlTip text, from which the separator string is determined:

 
The

deobfuscated string is of the format "powersheLL -e <base64 blob>". We only want the blob,
so that's pulled off:

 

Naturally, the base64 is decoded and presents what looks a little more like a PowerShell
script:

 

https://github.com/decalage2/oletools


5/6

Obfuscation is removed, leaving a clean string that URLs can be extracted from:
 

The same script works just fine for

other recent samples, too:
 

It's a

commonly observed mistake for analysts to throw Emotet maldocs into sandboxes and
assume that the first URL that gets requested is the only one for the document, where there
should always be 5 or 7. Where one request fails, the next URL from the list will be
requested.

As has been illustrated, with a little work you can develop safer, faster and reusable
analytical methods. While there are methods also known for extracting the full URL set
through dynamic analysis (and the same works for discovering the C2 set of the payload),



6/6

static analysis is always going to be the safer approach as you're not having to touch
adversary infrastructure. While the above method is only valid so long as the script used to
generate the macros doesn't change, it still serves as a reliable template for an approach
and requires little work to adapt to changing conditions.

To keep up to date with Emotet developments, we recommend following @Cryptolaemus1
on Twitter. Abuse.ch also provide an excellent feed of Emotet indicators that can be ingested
in a variety of formats:

All IndeSIEM customers benefit from these detections via integration with LogRhythm. We
will also be continuing frequent testing of samples to ensure IndeEDR customers have full
coverage.

Those with an ANY.RUN account can download the sample described in this post here.

If you'd like to find out more about how Inde can help detect these security threats,
you can contact us here.

About the author

Chris Campbell

Chris was that notoriously disobedient kid who sat at the back of the class and always
seemed bored, but somehow still managed to ace all of his exams. Obsessed with the finer
details and mechanics of everything in both the physical and digital realms, Chris serves as
the Security Architect within the Inde Security Team. His ventures into computer security
began at an early age and haven't slowed down since. After a decade spent across security
and operations, and evenings spent diving into the depths of malware and operating
systems, he brings a wealth of knowledge to Inde along with a uniquely adversary focused
approach to defence. Like many others at Inde, Chris likes to unwind by hitting the bike trails
or pretending to be a BBQ pitmaster.

COMMENTS

https://twitter.com/Cryptolaemus1
https://twitter.com/abuse_ch
https://app.any.run/tasks/8e0c6590-01ce-4d7b-8ccf-7a0b5352df0d
https://www.inde.nz/contact-us
https://www.inde.nz/blog/author/chris-campbell

