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Emulating NotPetya bootloader with Miasm
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NotPetya is a famous malware of the Petya family. It appeared in June 2017. The part
running from the Master Boot Record (MBR) has been statically and dynamically studied,
using for instance the Bochs debugger from IDA. Is another approach possible? This article’s
goal is to show that we can emulate this bootloader using Miasm.

This article has been written by Jordan Bouyat (@la_F0uin3) and Adrien Guinet
(@adriengnt). It has originally been published in the MISC magazine n°98 in French. This is
a slightly updated and English translation of this article.

Introduction

This Petya variant first appeared in June 2017 in Ukraine. According to Mikko Hyppönen,
Chief Research Officer at F-Secure, the infection vector would be the update mechanism of
the accountability software M.E.Doc, widely deployed within Eastern countries.

This malware family has the particularity of overwriting the bootloader of the compromised
machine in order to encrypt parts of the hard drive when it reboots. This article uses this
bootloader as a pretext for a tutorial concerning the emulation and reverse engineering of
these little beasts thanks to the Miasm framework. The associated code is available here:
https://github.com/aguinet/miasm-bootloader/. It contains a Python implementation of a
subset of the interfaces of a classic x86 PC BIOS. The code was written in a way that is
easily reusable for other cases, or even to help the development / debugging of bootloaders
in general.

Related works

Many articles have already studied the behaviour of the NotPetya MBR, as well as its various
cryptographic implementations and mechanisms (and their faults). Here are some significant
ones:

MISC n°86 : “Pleased to meet you, my name is Petya !”, written by Damien Schaeffer
in July 2016
MISC n°93 : “Petya or Not Petya, that is the question”, written by “Teddy and Benjamin”
in September 2017, with a very thorough static reverse engineering of the bootloader.
Crowdstrike : Full Decryption of Systems Encrypted by Petya/NotPetya. Study of an
implementation error within the Salsa20 algorithm embedded in the bootloader (more
on that subject later in the article).

https://aguinet.github.io//blog/2020/08/29/miasm-bootloader.html
https://twitter.com/la_F0uin3
https://twitter.com/adriengnt
https://connect.ed-diamond.com/MISC/MISC-098/Emulation-du-bootloader-de-NotPetya-avec-Miasm
https://github.com/aguinet/miasm-bootloader/
https://www.crowdstrike.com/blog/full-decryption-systems-encrypted-petya-notpetya/
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NotPetya

This section deals only in a very general way with the malware’s cycle of life. It allows us to
highlight the part studied in this article.

Once NotPetya has run on the victim’s machine, it generates an AES encryption key that will
be used to achieve the first encryption phase. This key is itself encrypted with an RSA public
key.

The malware then checks that the system uses a classical partition scheme and, if it has
admin rights, enters its own data on the first sectors of the disc (from 1 to 18, then 32 to 34),
with its own MBR in the first sector. If the system uses UEFI (with a GPT partition scheme),
the malware skips this step. The machine then is restarted and the NotPetya bootloader
executed: a Salsa20 key and a nonce are generated. These secrets are used to encrypt the
Master File Table (MFT)  of NTFS file system. This data structure contains the metadata
needed to find the data associated with each file. This operation looks like a classical
“chkdsk”. Once this operation is done, the machine restarts one last time and then displays
the ransom message.

Miasm

Miasm is a reverse engineering framework developed in Python. It has many features,
among which:

open, modify and generate binaries in PE, ELF 32, 64 LE, BE.
assemble/disassemble x86, ARM, MIPS, SH4, PPC and MSP430 code.
lift instruction semantics into a custom intermediate representation.
emulate this intermediate representation, with various JIT (Just-in-time) compilers to
speed things up.
simplify/modify this intermediate representation, to de-obfuscate code for instance.

Why emulate NotPetya with Miasm?
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There are various ways to emulate a bootloader. A classical approach is to use QEMU (or
any other virtualization/emulation solution) by writing the bootloader on a virtual hard disk,
but it makes it difficult to instrument the bootloader code. Such a thing is however possible
via IDA’s Bochs debugger. This approach was adopted by Teddy and Benjamin in MISC No.
93, but also by Saurabh Sharma . This method usually works well and makes debugging a
bootloader an easy task.

In the article associated with the presentation of his Miasm tool at SSTIC in 2012 , Fabrice
Desclaux showed Miasm possibilities. One of the proposed applications was the emulation of
a bootloader.

The ability to fully emulate a bootloader (until the BIOS interruption) with a framework like
Miasm gives a sharper control over what’s happening, possibly allow de-obfuscation, and
use all the tools developed in Miasm for this task. It becomes for example very simple to
instrument the code in order to see the data read/written on the disk, the secrets generated,
etc.

Eventually, NotPetya’s bootloader code is succinct, non-obfuscated and extremely simple (it
runs in real mode, in 16 bits and calls only a few BIOS interruptions), so it is a nice case
study to play with Miasm!

PC/x86 bootloader

Introduction

We will only discuss here the inner workings of “old-school” BIOS bootloaders. We will not
talk about UEFI.

2
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On x86 PCs, when the machine starts, the BIOS loads the first disk sector (named Master
Boot Record, or MBR) at 0x7C00 , and then jumps to this address. The MBR hence
contains the bootloader code. At this moment, the processor only supports 16-bit instructions
and can only address memory in real mode .

As a reminder, one disk sector contains 512 bytes. Therefore, it is not possible to store a lot
of code on this sector only. That’s why bootloaders are usually designed in several stages.
Indeed, the code in the first sector (the first stage) will load the stage 2 code from the hard
drive , and then jump into it.

Below is the MBR’s structure written by NotPetya:

NotPetya case

NotPetya works exactly this way. The bootstrap code (in green in the figure above) is the
assembly code below. The code at address 0x7C38  (that we named disk_read_stage2 ),
writes data in sectors 2 to 34 (inclusive) in memory at 0x8000 , and then jumps to this
address:

4
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seg000:7C00 cli 
seg000:7C01 xor ax, ax 
seg000:7C03 mov ds, ax 
seg000:7C05 mov ss, ax 
seg000:7C07 mov es, ax 
seg000:7C09 lea sp, start 
seg000:7C0D sti 
seg000:7C0E mov eax, 32 
seg000:7C14 mov byte ptr ds:word_7C93, dl 
seg000:7C18 mov ebx, 1 
seg000:7C1E mov cx, 8000h 
seg000:7C21 call disk_read_stage2 
seg000:7C24 dec eax 
seg000:7C26 cmp eax, 0 
seg000:7C2A jnz short loc_7C21 
seg000:7C2C mov eax, dword ptr ds:8000h 
seg000:7C30 jmp far ptr 0:8000h 

Emulation with Miasm

Installation

The system used for these tests is Linux-based. Windows 10 users should be able to make it
work by using Windows Subsystem for Linux (WSL), by installing for example Ubuntu using
the Windows Store .

We recommend using the version of Miasm specified in the README  file from the GitHub
repository. At the time of writing lines, the version used is v0.1.1. To recover this specific
version, do:

$ git clone --depth=1 --branch=v0.1.1 https://github.com/cea-sec/miasm/ 

We use the LLVM-based Miasm JIT engine, which needs the llvmlite  python package.
Other needed dependencies are installable directly through the provided
requirements.txt  file:

$ cd /path/to/src && pip install -r requirements.txt 

Then just install Miasm:

$ cd /path/to/miasm && pip install -r requirements.txt && python ./setup.py install 

Implementation

All the techniques described in this article can be tried thanks to the src/emulate_mbr.py
script in the aforementioned GitHub repository.

Multiple options are provided, some of them could be used to win some time during your
experiments:
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--dry : simulates the success of disk writings, but actually writes nothing.

--skip-encryption : the encryption function (which is the hottest one) will be ignored
(actually transforming it into a function that does nothing).

--verbose-bios-data : dumps log messages from our BIOS implementation, with a
dump of read and written disk data.

--verbose-bios : same as --verbose-bios-data , without the read and written
disk data.

The --help  flag can be used to have a more detailed list of available options.

The activation of Miasm’s logs can considerably slow down the performances of the overall
script. The --log-miasm-newblocks  option only dumps blocks that have never been
“jitted” by Miasm.

Creation of a test disk

We performed our tests with virtual machines running Windows XP and Windows 10. The
underlying hypervisor does not matter (VMWare, VirtualBox), as long as the disk created has
a fixed size and is using VMDK. The emulation of the bootloader is done directly on the
virtual machine’s disk. An advantage to this method is that there is no need to extract the
bootloader from the original malware DLL or from the generated VMDK.

 Emulation scenario

The test scenario is the following:

1. voluntary infection of the virtual machine with NotPetya
2. wait for at least 10s (the machine shouldn’t reboot by itself, or the bootloader will

actually launch its encryption code)
3. shutdown the virtual machine: the MBR has been replaced
4. run the emulation: the MFT is encrypted by the bootloader which then displays the

ransom
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If your virtual machine is not using a flat VMDK representation, you can convert it using
QEMU:

$ qemu-img convert -f vmdk mydisk.vmdk -O raw mydisk.raw 

We also give a test image in the aforementioned Git repository (file disk.raw.bz2 ). Once
unzipped, it is a 1GB file, and contains a simple NTFS partition with some test files.

We can now emulate the NotPetya bootloader. In order to do this, we need to emulate a
BIOS capable of:

reading/writing disk sectors
showing characters on the screen
capturing key strokes
booting on an MBR (“light” boot/reboot)

We are going to see how to implement this using Miasm.

System abstraction

We implement an abstraction of a simple system as seen by the BIOS. It contains:

a virtual disk (the HardDrive  class)
a video screen, which goes through a classical Unix terminal, using the stdout  pipe
a keyboard, which uses the stdin  pipe to gather key strokes (functions in
async_kb.py )

Abstraction is implemented in the System  class, of which one instance is used during the
emulation. This instance is initialized alongside the Miasm VM.

Miasm virtual machine initialization

As explained in the introduction, the MBR code is loaded and executed by the BIOS at the
address 0x7C00 . Then, this code will load and write its second stage at the address
0x8000 . The left space is dedicated to the stack. It begins at the address 0x500  and ends

at the address 0x07C00 . Therefore, the corresponding space is
[0x00000500:0x00007BFF] .

First, we need to declare these memory spaces to the Miasm virtual machine:
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HD0 = HardDrive(hd_path) 
sys_ = System([HD0]) 
mbr = HD0.read_sector(0) 
stage1_addr = 0x07C00 
stage2_addr = 0x08000 
jitter.vm.add_memory_page(stage1_addr, PAGE_READ | PAGE_WRITE | PAGE_EXEC, mbr, 
"NotPetyaS1") 
jitter.vm.add_memory_page(stage2_addr, PAGE_READ | PAGE_WRITE | PAGE_EXEC, 
"\x00"*SECTOR_LEN*32, "NotPetyaS2") 
jitter.vm.add_memory_page(0x500, PAGE_READ | PAGE_WRITE, "\x00"*(0x7C00-0x500+1), 
"Stack") 
# Pretty print of the memory layout 
print(jitter.vm) 

Now, the memory layout of the Miasm virtual machine is the following:

Addr               Size               Access Comment  
0x500              0x7700             RW_    Stack  
0x7C00             0x200              RWX    NotPetyaS1  
0x8000             0x4000             RWX    NotPetyaS2 

NotPetya loads 32 sectors from the disk to the memory when executing the first stage. This
is why the allocated memory for the second stage is 32 sectors long (32*512 bytes).

BIOS interruption handling in Miasm

Miasm allows us to specify an interruption handler which will be called whenever an INT
instruction is executed. To do so, we have to tell Miasm to call our BIOS interruption handler
exception_int  with the help of add_exception_handler  of the current used jitter:

jitter.add_exception_handler(EXCEPT_INT_XX, lambda jitter: exception_int(jitter, 
sys_)) 

Interruption support

Now, we have to implement the different BIOS interruption handlers. We can split them into
four main families :

INT 10h  : access to the screen (write characters, change colors…),
INT 13h  : access to the disk (read/write sectors, get disk geometry…),
INT 16h  : access to the keyboard (read keystroke…),
INT 19h  : boot on the disk’s MBR.

INT 13h

Here is an example of the INT 13h  interruption, with the 0x43  code function ( Extended
Read Sectors From Drive ). This code implements the instruction to load multiple sectors
from the disk to the memory:
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@func(disk_interrupts, 0x42) 
def extended_read_sectors(jitter, sys_): 
   drive_idx = get_xl(jitter.cpu.DX) 
   print "Extended read sectors, drive idx 0x%x" % drive_idx 

   dap = jitter.vm.get_mem((jitter.cpu.DS << 4)+jitter.cpu.SI, 16) 
   dap_size, _, num_sect, buff_addr, abs_sect = struct.unpack("<BBHIQ", dap) 

   hd = sys_.hd(drive_idx) 

   print("  Read %d sectors from sector %d" % (num_sect, abs_sect)) 
   size = num_sect * SECTOR_LEN 
   data = hd.read(abs_sect * SECTOR_LEN, size) 

   jitter.cpu.cf = 0 # No error 
   # AL is the number of sectors read 
   # AH is the return code, 0 = successful completion 
   jitter.cpu.AX = set_16bit_reg(low=int(len(data) / SECTOR_LEN), high=0) 
   jitter.vm.set_mem(buff_addr, data) 

Note: this Python code doesn’t include error management for readability reasons. The sys_
object is the system abstraction explained in System abstraction.

Sectors can be loaded from disk in two different ways by using a different kind of addressing
mechanism for the same INT 13h  interruption:

1. CHS (Cylinder, Head, Sector) addressing mechanism, used by the 02h / 03h  codes.
It can read/write one or many sectors by specifying the index of the cylinder and the
head,

2. LBA (Logical Bloc Addressing) addressing mechanism, used by the 42h / 43h  codes.
It can read/write one or several sectors by specifying the corresponding sector in a
absolute way, i.e. by specifying the offset from the first sector number on the disk
regardless of heads/cylinders.

NotPetya uses the LBA addressing mechanism. This method needs to fill a DAP (Disk
Address Packet) structure. This structure describes which sectors to read/write and where to
read/write them into live memory.

One can see that an extended LBA structure exists to read or write multiple sectors at the
same time:

0 1 Packet size

1 1 Zeroed field

2 2 Number of sectors to load

4 4 Buffer address to load sectors to (seg:off)
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8 8 Absolute offset of the first sector to read

To sum up:

1. the DAP is parsed,
2. data is read from the virtual disk,
3. the read data is stored in the corresponding memory page of the instantiated Miasm

virtual machine.

The writing mechanism is the exact opposite: the specified buffer address in the DAP
contains the data to write.

INT 19h

The second chosen example is the INT 19h  interruption (diskboot). It reboots the machine
 and is used in two locations :

1. at address 0x892E , which is called if a fatal error occurs,
2. at address 0x820D , when the machine reboots after the MFT encryption.

The INT 19h  interruption is called right after the POST (Power On Self Test) procedure by
the BIOS. After that, the MBR code is loaded into live memory at Ox7C00 . Then, the BIOS
jumps at this address.

So we can say here that it is used as a sort of soft reboot because the reboot is not a
complete one. This instruction is part of the boot process after BIOS execution. Some BIOS
can handle boot medium priority while others just loop over available mediums and boot on
the first one it can.

Here, we will emulate this instruction simply by loading again the MBR code into the memory
page dedicated to it (stage 1), and then jump onto it (at address 0x7C00 ):

diskboot_interrupts = FuncTable("INT 19h (diskboot)") 
@func(diskboot_interrupts, 0x02) 
def reboot(jitter, sys_): 
   # Here, we assume only one bootable disk (index 0) 
   hd = sys_.hd(0) 
   mbr = hd.read_sector(0) 
   jitter.vm.set_mem(0x7C00, mbr) 
   jitter.pc = 0x7C00 

For a few more hacks…

The STI  (Set Interrupt Flag) instruction is used at address 0x7C0D . It can activate masked
interruptions (flag IF  and offset 9 of the FLAGS  register). This flag doesn’t have any effect
on non-maskable interruptions. Because hardware interruptions are fully emulated, Miasm

67
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doesn’t contain (legitimately) semantics for this instruction.

So we simply decided to ignore it by setting a breakpoint at its corresponding address:

jitter.add_breakpoint(0x7C0D, handle_sti) 

Then, we redirect the execution flow to the next instruction. Because this instruction is only 1
byte long, a simple incrementation of the program counter does the trick:

def handle_sti(jitter): 
   jitter.pc += 1 
   return True 

Yippie kay yay motherfucker !

Now that the useful handlers are implemented and the MBR code is loaded and mapped in
Miasm virtual machine, emulation of NotPetya can begin:

jitter.init_run(stage1_addr) 
jitter.continue_run() 

If the --verbose-bios-data  flag is set (see Implementation), output of the script prints the
content of the various read and write operations on the disk. For example, here is the content
of the second sector (of the 32 loaded sectors by the bootloader at 0x8000 ):

Extended read sectors, drive idx 0x0 
 Read 1 sectors from sector 2 
00000000: 50 FF 76 04 E8 91 0A 83  C4 0A E8 3B 07 CD 19 5E  P.v........;...^ 
00000010: C9 C3 6A 0E E8 39 07 5B  68 70 9C E8 C0 03 5B C3  ..j..9.[hp....[. 
00000020: C8 04 04 00 56 6A 00 6A  01 6A 00 6A 20 8D 86 FC  ....Vj.j.j.j ... 
00000030: FD 50 8A 46 06 50 E8 21  0A 83 C4 0C 6A 00 68 8E  .P.F.P.!....j.h. 
[...] 

The loaded code matchs stage 2. Also, one can easily see the content loaded from sector
32:
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Extended read sectors, drive idx 0x80 
 Read 1 sectors from sector 32 
00000000: 00 AA 92 E7 82 11 15 D3  20 96 A7 75 51 C0 36 08  ........ ..uQ.6. 
00000010: E8 65 42 8C 73 9F 06 53  77 CB C5 95 60 C8 38 69  .eB.s..Sw...`.8i 
00000020: 9B 0D A4 99 E0 13 12 30  79 31 4D 7A 37 31 35 33  .......0y1Mz7153 
00000030: 48 4D 75 78 58 54 75 52  32 52 31 74 37 38 6D 47  HMuxXTuR2R1t78mG 
00000040: 53 64 7A 61 41 74 4E 62  42 57 58 00 00 00 00 00  SdzaAtNbBWX..... 
00000050: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................ 
00000060: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................ 
00000070: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................ 
00000080: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................ 
00000090: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................ 
000000A0: 00 00 00 00 00 00 00 00  00 48 34 79 5A 73 77 56  .........H4yZswV 
000000B0: 54 64 43 6B 43 77 55 68  72 31 4D 52 6D 4A 65 69  TdCkCwUhr1MRmJei 
000000C0: 76 31 34 46 4B 39 6A 5A  6A 4D 36 36 4C 44 79 65  v14FK9jZjM66LDye 
000000D0: 71 52 4C 64 6B 38 53 58  53 53 73 53 53 45 78 34  qRLdk8SXSSsSSEx4 
000000E0: 44 51 57 4E 47 00 00 00  00 00 00 00 00 00 00 00  DQWNG........... 
000000F0: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................ 
[...] 
000001F0: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ............... 

This sector is where NotPetya stores data. According to the description done in MISC 805
n°93, we can deduct its content :

0x00  is the encrypted disk flag,
AA 92 E7 82 11 15 D3 20 96 A7 75 51 C0 36 08 E8 65 42 8C 73 9F 06 53

77 CB C5 95 60 C8 38 69  is the 32 bytes long Salsa20 key,
0D A4 99 E0 13 12 30 79  is a 8 bytes long nonce,

next data is the random string printed when the malware was executed on Windows at
the beginning.

After the encryption is done by the bootloader, key and nonce are erased from disk with 32
successive writings of zeros.

Moreover, we can see that sector 35 is used to store the number of total encrypted MFT
entries. For example, here is the content of sector 35 right after the MFT header encryption:

Extended write sectors, drive idx 0x80 
 Write 1 sectors at offset 35 (from memory at 0x5C74) 
00000000: 01 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  ................ 
[...] 

Retrieving secrets in memory

One of the advantages of emulation is the ability to easily analyze memory pages. In our
case, it is possible to retrieve the Salsa20 key used, even after the MFT table has been
encrypted (during the “false chkdsk”, see NotPetya).

https://boutique.ed-diamond.com/numeros-deja-parus/1268-misc-93.html
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In fact, as explained in section INT 19h; after the encryption is over, the bootloader executes
a “soft reboot” with the help of the interruption INT 19h . It doesn’t reboot completely the
computer therefore the BIOS is not executed again. The data present in memory before the
“soft reboot” is not tampered with. If the computer goes through hard reboot or reset, there
would be great chances for the BIOS to overwrite data present on the stack with its own,
including the precious Salsa20 key.

So, if the computer has not been rebooted or reset, it is pretty interesting to see if the
Salsa20 key is still in memory. To do so, we simply read the key written in sector 32 (see this
section) and store its value. Then, we place a breakpoint on the instructions in charge to
show the ransom message, at address 0x85AF :

key = HD0.read(32*SECTOR_LEN + 1, 32)  
jitter.add_breakpoint(0x85AF, functools.partial(find_key_in_mem, key=key)) 

The find_key_in_mem  function browses the virtual machine memory to find the key stored
in the previous step:

def find_key_in_mem(jitter, key):
   # Find if the salsa20 key is still in memory! 
   mem = jitter.vm.get_all_memory()
     print >>sys.stderr, "\n[+] Looking for key %s in memory..." % key.encode("hex") 
   for addr,v in mem.iteritems(): 
       idx = v['data'].find(key) 
       if idx == -1: 
           continue 
       print >>sys.stderr, "[+] Key found at address %s!" % hex(addr + idx) 
       break 
   else: 
       print >>sys.stderr, "[-] Key not found in memory!" 
   return True 

This operation can be activated in the script using --hook=find_key  option, like this:

$ python ./emulate-mbr.py --hook=find_key disk.raw 

Repairing file system on C: 
[... encryption happends here ...] 

[+] Looking for key [your salsa20 key] in memory... 
[+] Key found at address 0x674a! 

To speed up the process, the --skip-encryption  option can be used (see
Implementation). Be careful, even if this option is used, the encryption flag in sector 32 is still
set. The flag --dry  prevents this behaviour.

Because we know the address where the key is stored ( 0x674A ), we can put a breakpoint
on a write access at this location, allowing us to know which part of the bootloader writes this
key:
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def print_ip(jitter): 
   print(hex(jitter.pc)) 
   return False 

jitter.exceptions_handler.callbacks[EXCEPT_BREAKPOINT_MEMORY] = [] 
jitter.add_exception_handler(EXCEPT_BREAKPOINT_MEMORY, print_ip) 
jitter.vm.add_memory_breakpoint(0x674a, 1, PAGE_WRITE) 

Because there is no ASLR or equivalent mechanism, this address will always be the same!

Bootloader modification to decrypt the MFT

If we have a mechanism to write directly into the memory of the machine (for example by
using a PCI Express card , or other interfaces like FireWire or Thunderbolt ), it is possible
to decrypt the MFT data. The attack consists in patching the bootloader memory so that its
uses the remaining key on the stack. This section simulates this attack using Miasm.

To do so, we will inject some code at address 0x82A8 . This function checks that the key
entered is the expected one. Given that it has been erased from the hard drive, and that the
ransom text is completely random , the bootloader has in theory no way to know if the
entered key is the right one. This function will always return 0 (incorrect key). The injected
code will copy the key Salsa20 from the 0x674A  address to a specific location on the stack,
so that the decryption function at 0x835A  will use this key. We will then jump on this
function.

Associated assembly code is the following:

   ; Save registers on the stack 
   PUSHA 
   LEA DI, WORD PTR [BP-0x44] 
   LEA BX, WORD PTR [key_addr] 
   XOR CX,CX 

   ; Copy the key that remains on the stack to [bp-0x44] 
loop: 
   MOV EAX, DWORD PTR [BX] 
   MOV DWORD PTR [DI], EAX  
   ADD DI, 4 
   ADD BX, 4 
   INC CX 
   CMP CX,8 
   JNZ loop 

   ; Restore previously saved registers 
   POPA 
   ; Jump on the decryption function (CS:OFFSET => using an absolute address) 
   JMP 0000:0x835A 

We use Miasm to assemble it using the following function:

8 9
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def asm_shellcode(asm, labels = None): 
   machine = Machine("x86_16") 
   symbol_pool = asmblock.AsmSymbolPool() 

   # Assemble 
   blocks, symbol_pool = parse_asm.parse_txt(machine.mn, 16, asm, symbol_pool) 

   # Set custom labels 
   if not labels is None: 
       for name,value in labels.iteritems(): 
           sym = symbol_pool.getby_name(name) 
           symbol_pool.set_offset(sym, value) 

   # Resolve all the labels 
   patches = asmblock.asm_resolve_final(machine.mn, 
                                        blocks, 
                                        symbol_pool) 

   # Patch the final code with the label values 
   shellcode = StrPatchwork() 
   for offset, raw in patches.items(): 
       shellcode[offset] = raw 
   return str(shellcode) 

Let’s take a look at this function. The code is first assembled using an x86 16-bit assembler.
Given labels are then associated to concrete values using the symbol_pool.set_offset
function. Remaining labels (in our case loop ) are resolved with the
asmblock.asm_resolve_final  function, which returns assembly code for each block. We

finally use the StrPatchwork  function to assemble the final “shellcode”.

The read_key_and_patch  function loads the key in memory, dumps it and writes the
freshly assembled code in memory:

def read_key_and_patch(jitter): 
   # Key is still in the stack, at 0x674A. You can find this value by activating the 
   # find_key_in_mem breakpoint! 
   key_addr = 0x674A 
   key = jitter.vm.get_mem(key_addr, 32) 
   print >>sys.stderr, "\n[+] Key from memory: %s" % key.encode("hex") 

   # Assemble our "shellcode" thanks to Miasm! 
   shellcode = """ 
... 
   """ 
   shellcode = asm_shellcode(shellcode, {"key_addr": key_addr})

   # Patch the bootloader in memory to decrypt using the key 
   jitter.vm.set_mem(0x82A8, shellcode) 
   return True 

The remaining thing to do is to put a breakpoint at the same address as in section Retrieving
secrets in memory ( 0x85AF ) to call this function:
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jitter.add_breakpoint(0x85AF, read_key_and_patch) 

Everything is now set up. When the bootloader asks for the decryption key, user will just
have to press enter . --hook=patch_bootloader  flag of the emulate_mbr  script
performs this attack.

It is worth mentioning that we actually tried this at Synacktiv’s headquarters using
vulnerabilities in HP’s iLO4 to gather the Salsa20 key from memory, patch the bootloader
and decrypt MFT data.

Encryption keystream study

The encryption algorithm used is Salsa20 stream cipher. The general principle is: a random
data flow based on a key - commonly called the keystream - is generated, and this stream is
XORed with the data which will be encrypted. An advantage of stream ciphers is that the
data to be encrypted do not need to be padded. On the other hand, one needs to be careful
not to use the same parts of this stream twice.

 Data encryption with Salsa20

We can verify this using Miasm, by looking at the data before and after encryption, and by
showing their XOR difference.

In order to do this, we already know how to put breakpoints. The beginning of the encryption
function is at address 0x9798 , and the end at address 0x9877 . We are going to out the
first breakpoint just after ‘enter  instruction, and the second just before leave`
statement, in order to have the stack properly aligned to recover data before and after
encryption. The associated code is the following:

https://airbus-seclab.github.io/ilo/Whitepaper-Defeating_NotPetya_from_your_iLO4-guinet-perigaud-gazet-czarny.pdf
https://synacktiv.com/
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_last_buf = None 
def encrypt_start(jitter, options): 
   global _last_buf 
   buf_ptr  = upck16(jitter.vm.get_mem((jitter.cpu.SS << 4) + jitter.cpu.BP + 0xC, 
2)) 
   buf_size = upck16(jitter.vm.get_mem((jitter.cpu.SS << 4) + jitter.cpu.BP + 0xE, 
2)) 
   _last_buf = jitter.vm.get_mem((jitter.cpu.DS << 4) + buf_ptr, buf_size) 
   return True 

def encrypt_end(jitter, options):
   global _last_buf 
   buf_ptr  = upck16(jitter.vm.get_mem((jitter.cpu.SS << 4) + jitter.cpu.BP + 0xC, 
2)) 
   buf_size = upck16(jitter.vm.get_mem((jitter.cpu.SS << 4) + jitter.cpu.BP + 0xE, 
2)) 
   encr_buf = jitter.vm.get_mem((jitter.cpu.DS << 4) + buf_ptr, buf_size) 
   keystream = ''.join(chr(ord(a)^ord(b)) for a,b in 
zip(_last_buf,encr_buf)).encode("hex") 
   keystream = ' '.join(keystream[i:i+4] for i in xrange(0,len(keystream),4)) 
   print >>sys.stderr, "Keystream for next 2 sectors: %s" % keystream 
   return True 

jitter.add_breakpoint(0x979C, functools.partial(encrypt_start, options=options)) 
jitter.add_breakpoint(0x9876, functools.partial(encrypt_end, options=options)) 

The --dump-keystream  flag of the emulate_mbr  script enables this.

By looking at the output, we can see that between two sectors ( 2*512  bytes), the
keystream is only shifted by two bytes, instead of the normally required 2*512  bytes. This
shift is schematized in the image below:

We can also see that on a screenshot of the output of the emulate_mbr  script below:
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Screenshot of the keystream

Thus, parts of the keystream are reused between sectors, which may help to recover some
of its original data.

Indeed, if we consider p  to be the clear text,  k  the keystream and c  the encrypted text,
then the encryption function E  is defined as  E (p) = p xor k = c . A part of the MFT
structures being invariant and known, it is therefore possible, in two sectors, to find part of
the keystream used for these two sectors. This one is reused for the two following sectors by
being simply shifted by two bytes, so some of the clear text from these other areas can be
found.

This vulnerability in the Salsa20 implementation of the bootloader has been exploited by
CrowdStrike to recover a large portion of MFT’s original data (between 98.10% and 99.97%
depending on the method).

Conclusion

Emulation of the NotPetya bootloader code allows the verification of various assumptions
and the understanding, in a very tangible way, of the different steps related to the encryption
of MFT entries. In addition, it allows to easily find the bias in the Salsa20 keystream
implementation (without having to statically reverse the algorithm), or to simulate the
recovery of the key, which remains in memory after the encryption.

This article only shows a small subset of Miasm’s possibilities, and we hope that the
approach adopted in this article will encourage uninitiated readers to try and play with it :).
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Appendix: application using vulnerabilities in HP iLO 4

With Alexandre Gazet & Fabien Perigaud, we spent some time in Synacktiv’s offices to
combine the attacks described in this article with vulnerabilities they found with Joffrey
Czarny on HP iLO 4’s management engine. These vulnerabilities allowed us to read and
write the memory of an infected server stuck at NotPetya’s bootloader stage, so that we were
able to recover the encryption key and patch the bootloader in order to decrypt the MFT.

A full write up of the experiment can be read on Airbus seclab website.
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