Smokeloader Analysis and More Family Detections

2020-08-27

triage

L

Written by
Pete Cowman

In this week’s Triage Thursday blog, we’ll cover a number of minor updates to family
classification introduced in the past week, and @Casperinous goes under-the-hood with
recent changes observed in SmokelLoader samples.

Over the past few days we have released another batch of smaller detection updates,
affecting several families. The main focus has been on ransomware and stealers, adding
family-specific detection for samples recently seen in the wild.

1/9

https://hatching.io/blog/tt-2020-08-27/
https://twitter.com/Casperinous

Read on below for more information on each of these topics.

Not signed up yet? Head over to https://tria.ge/ and register right away!

SmokelLoader Analysis

Smokeloader is a downloader/backdoor which has been active since 2011. Over the years it

has evolved both its capabilities and the variety of malware it downloads to the infected host.

In this post we will have a look at what’s changed since the most recent analysis by
Checkpoint and present the new features introduced in 2020.

Smokeloader Analyses:

e 200827-m1jren2nas
o 200827-6x7fdlj8y2
e 200827-vbtcrvw9es

New Anti-VM methods

Detection of unsigned drivers

Smokeloader introduced 2 new anti-VM checks closely associated with the gaming
community.

The first one checks if the executable’s path contains the string [A-FO-9]{4}.vmt . Also, if
the architecure of the system is 64-bit, NtQuerySystemInformation is called with the first
argument setto 0x67 (SystemCodeIntegrityInformation). After the call, ESI points
tothe SYSTEM_CODEINTEGRITY_INFORMATION . The check [ESI+4] confirms if the struct’s
CodeIntegrityOptions member is equal to 0x2 . Based on some public information it is
assumed that this check is intended to detect the Driver Signing Policy of the infected host -
if the value is indeed equal with ©x2 an unsigned kernel driver can be installed, a common
configuration for sandboxes.

The check is not well implemented - instead of comparing if the variable is equal with 0x2 ,
it should be using a TEST instruction to figure out if the ox2 flag is used.

2/9

https://tria.ge/
https://research.checkpoint.com/2019/2019-resurgence-of-smokeloader/
https://tria.ge/200827-m1jren2nas/behavioral1
https://tria.ge/200827-6x7fdlj8y2/behavioral1
https://tria.ge/200827-v6tcrvw9es/behavioral1

Detection of loaded DLLs

0040200 C745 FC 01000000 mov dword ptr ss:ebp-4,1
00402013 SBSD 08 mov ebx,dword ptr ss:|febp+aj
00402016 21FF xor edi,edi

00402018 &6: BCESB mov ax,gs

00402018 &6&: BLCO test ax,ax

0040201E w74 27 je smokey_loader. 402047
00402020 BD7S FO lea esi,dword ptr ss:|lebp-10f
00402023 C706 08000000 mov dword ptr ds:[esi],S
00402029 ¥ push edi

00402024 &A 08 push &

0040202C 5e push esi

00402020 &8A &7 push &7

0040202F FF23 88000000 call dword ptr ds: [ebx+83]
00402035 BLCO test =2ax,edx

00402037 ~| 75 0OE jne smokey_Tloader. 402047
00402039 SBE46 04 mov eax,dword ptr ds:[esi+4]
0040203C BLCO test =2ax,e2dx

0040203E w| 74 05 je smokey_loader. 402045
00402040 B3IFE 02 cmp eax,2

00402043 ~| 75 02 jne smokey_ loader. 402047
00402045 ~| EB 21 jmp smokey_Tloader. 402068
00402047 LB8DF5 F8 1ea esi,dword ptr ss:|ebp-:j
00402044 B93E mov dword ptr ds:[esi],edi
0040204C 57 push edi

00402040 &A 04 push 4

0040204F 1 push esi

00402050 &8A 07 push 7

00402052 &6A FF push FFFFFFFF

00402054 FF93 8CO00000 €2l dword ptr ds: [ebx+8C]
00402054 BLCO test =2ax,edx

0040205C ~ 75 08 jne smokey_Tloader. 402066

Smokeloader also extended the list of loaded DLLs that it checks for. Going by previous
analyses Smokeloader was only checking for sbiedll, but it was observed that in 2020 it is

also looking for:

e aswhook

e snxhw
| Address | Hex | AscIT
DO40D20EB | 73 62 63 65|64 GC G6C 00|61 73 77 GB|GF GF 6B 0D0O|sbiedll.aswhook.
D04020FE |73 6E 78 68|6E 00 00 00|00 SE 80 3E|00 74 11 56|snxhk....A.>. .V

Detection of processes associated with virtualization software

Something that is common in various packers/loaders is checking the running processes
against an array of predefined strings, in order to check virtualized environments.
Smokeloader has implemented the same check, by calling NtQuerySystemInformation
with the first parameter setto 0x5 (SystemProcessInformation)in order to get all the

running processes. Then there is a loop where every process is converted to lowercase and

is checked with wcsstr to see if it contains the following strings:

e L"gemu-ga.exe”

e L"qga.exe”

e L"windanr.exe”

e L"vboxservice.exe”
e L"vboxtray.exe”

e L"vmtoolsd.exe”

e L"prl_tools.exe”

3/9

Address | Hex ASCITI

0O401EQY | 71 00 &5 00|gD QO 75 QOQ(2D 00 &7 00|61 OO 2E OO|Q.2e.m.uU.-.g.4a
O0401E1LT ra &5 00 00 Q0|00 OO0 OO Q0|00 OO0 00 00| 2. X e e snaanns
0O401E27 |71 00 &7 00|61 OO 2E OO|gL Q0 78 QOQ|65 00 OO0 OO0|Q.g.d...8.X.E...
O0401E37 |00 OO0 OO0 OQD|00 OO OO OOD| 00 OO0 OO0 OD|(O00 OD OO0 D0 @i ecanasanannns
00401E47 |77 00 &9 00|6E 00 &4 00|61 00 &E 00|72 00 2E O0(w.i.n.d.a.n.r
OD401EST i 65 00 00 OO(0D OO0 OO QOO0 OO0 0D OO0 8 X.Bues cnananas
0O0O401E6GT (76 00 &2 00 |GE OO F8 Q0|73 00 &5 0O0|Z ri v.b.o.X.5.e.r.v.
O0401EF7 (69 00 &3 00|65 00 2E OO|gS 00 75 Q0|65 00 OO0 OO(j.C.8...8. XK. 8.
OD401EBT | 76 00 &2 00 i 74 00 72 00 i v.b.o.X.T.r.a.y.
00401E97 | 2E 00 &5 00|78 OO &5 Q0|00 OO OO Q0|00 OO OO0 OO ... X.Bu i ienanas
00401EA7 |76 00 6D 00|74 00 &F O0|6&6F 00 &C 00|73 0O 64 0OO0|(wv.m.t.0.0.71.5.d
O0401EBT | 2E 00 &5 00|78 0D &5 00|00 OO0 OO OD|(OO0 OD OO0 OO ..8.H.B. i aenns
O0401EC7 (70 00 72 00(6&6C OO0 S5F 00|74 OO &F OO|6F 00 &C OO(p.r.l._.t.0.0.1
0O401EDY |73 00 2E OO0|gL OO 78 QO(6&5 00 OO OO|0O0 OO OO0 OO0 I T L -

Detection of files associated with virtualization software

Another technique employed by Smokeloader is checking the System32 folder for files that
are associated with virtualization software. This is again done by calling

NtQuerySystemInformation with the first argument 0xB (SystemModuleInformation).
Then, following the previous logic, there is a loop where every file in the aforementioned
location is converted to lowercase and checked by calling strstr if it contains the following
strings:

e “vmci.s”
e “vmusbm”
e “‘vmmous”
e “‘vm3dmp”
e “vmrawd”
e “vmmemc’
e “vboxgu”
e “vboxsf”
e “vboxmo”
o “vboxvi’
e “vboxdi”
o ‘“vioser’

Address | Hex ASCIT

00401B4C |76 6D 63 69 |2E 73 00 76|60 75 73 62 (6D 00 76 &D | Wmci.s.wvmushm.wm
00401BSC (6D &F 75 73|00 76 6D 33|64 6D 70 00|76 60 72 61| mous.vmZdmp.wvmra
O0401B6C (77 &4 00 76(6D 6D &5 &D |63 00 76 &2 |6F 78 &7 75 |wd.vmmemc.vboxgu
00401B7C |00 76 62 6F |78 73 66 00|76 62 &F 758|6D &F 00 7&|.vboxsT.vboxmo.v
00401BB8C | 62 6F 7B 76|69 00 76 62|6F 78 64 69|00 7& 69 &6F|boxvi.vboxdi.wvio
00401B9C |73 65 72 00|00 S5E S5F 80(|3E OO0 74 14|56 57 FF 93| ser..4 .?.t.wwy.

After successfully passing the aforementioned checks, Smokeloader must determine the
system’s architecture. This is done by using the gs register and a test instruction. For our
own convenience, we patched the check in order for Smokeloader to decompress the 32-bit
payload and continue the analysis. While it was common for Smokeloader to utilize
Propagate to inject the payload in explorer.exe , in the 2020 version it is still injecting into
this process but it using a more typical combination of NtCreateSection,

NtMapViewOfSection and RtlCreateUserThread to start the execution.

4/9

https://info.phishlabs.com/blog/smoke-loader-adds-additional-obfuscation-methods-to-mitigate-analysis
https://www.ired.team/offensive-security/code-injection-process-injection/ntcreatesection-+-ntmapviewofsection-code-injection

<

55C0

r74 5D

661 BCES

861 85C0

75 0D

SDEZ D32D0000D
ES 022D0000
EE OB

8083 DBSACQDDD

test eax,edx

mov ax,gs
test ax,ax

jne smokey_Tloader.
Tea eax,dword ptr
mov ecx,2D0z

jmp smokey_Tloader.
Tea eax,dword ptr

je smokey_Tloader. 402A2D

4029ES
ds: [ebx+2DD2]

4029F0
ds: [ebx+5ADE]

B9 AL ICO000) mowv eCx,3ICAS
FFEZ 50970000 push dword ptr ds:[ebx+39780]
51 push ecx
4 push eax
FF75 FC push dword ptr ss:[ebp-4]
ES8 CAECFFFF call smokey_loader.4016CA
~| EB OF jmp smokey_loader. 4024311

Changes in the payload

Increased size of random data buffer

Smokeloader introduced the usage of randomly generated data in 2019, possibly in order to

fool IDS/IPS systems. The size of the buffer is calculated randomly but is set to be at most
0x104 . Then, the number is used to allocate heap space and fill it with randomly generated
lowercase letters. The generated string is appended at the end of the packet structure.

bl a2
loc_2A347A:
BA @4 8l a8 aa mowv edx, 184h
EBE F& BF 80 88 call rnd_num
8B CF mow ecx, edi
80 7@ 1E lea esi, [eax+lEh]
80 S5E 4F lea ebx, [esi+iFh]
8D 56 81 lea edx, [esi+l]
89 5C 24 1@ mov [esp+l8h+var_ 8], ebx
EE Bl @F @8 o8 call allocate _heap
8B EB8 maw ebp, eax
8B CF maow ecx, edi ; al
56 push esi ; length
88 D5 mov edx, ebp ; mem_loc
EE 5@ B3 eo aa call create_ascii rnd_str

Change in communication traffic

As was discovered in early March, the communication packet structure of Smokeloader has
been extended by 0x10 bytes. In the new struct, after the bot_id member, there is a new
field allocated to hold the name of the infected host. There is also now a check to either
append the random data or the additional data at the end of the pkc struct. The new struct
is now defined like this:

5/9

https://research.checkpoint.com/2019/2019-resurgence-of-smokeloader/
https://twitter.com/ESETresearch/status/1236925773778489344?s=20

struct pkc {
WORD magic
BYTE[40] bot_id
BYTE[16] comp_name
BYTE[6] botnet_id
BYTE os_ver
BYTE sec_flag_1
BYTE sec_flag_2
WORD comm_id
DWORD task_idx
DWORD tmp_path_run
BYTE[n] extra_data

6/9

[l s (55
loc_ 2A34A4:
8D 53 81 lea edx, [ebx+1]
88 CF mow ecx, edi
EZ 9B @F 00 o8 call allocate heap
8B F@ mov esl, eax
80 8F 8C 82 o2 a8 lea ecx, [edi+2ech]
51 push ecx
B8 E4 @87 B8 e mov eax, 2828
80 4E @2 lea ecx, [esi+flag.bot_id]
66 89 86 mov [esi], ax
51 push ecy
FF 97 AE ©E 00 oo call dword ptr [edi+2EAEh]
80 8F 35 02 62 ea lea ecx, [edi+235h]
51 push ecy
80 46 2B lea eax, [esi+flag.usr_name]
58 push eax
FF 97 AE ©E 00 oo call dword ptr [edi+2EAEh]
8D 87 45 02 6@ ea lea eax, [edi+245h]
5@ push eax
8D 45 3B lea eax, [esit+flag.botnet_id]
5@ push eax
FF 97 AE BE &2 ea call dword ptr [edi+2EAEh]
8A 87 5B B4 B8 e mav al, [edit+45Bh]
Ce E8 a4 shl al, 4
B2 87 5F 84 a8 ae add al, [edit+45Fh]
88 45 41 mov [esi+flag.os_wver], al
8A 87 6B @5 e@ ee mow al, [edi+56Bh]
88 48 42 mov [esit+flag.sec_flag_ 1], =l
8A 87 6F @5 e@ ae mow al, [edi+56Fh]
88 45 43 mov [esit+flag.sec_flag_2], =al
66 8B 44 24 1C mov ax, [esp+l8h+comm_id]
66 89 46 44 mov [esi+flag.comm_id], ax
8B 44 24 28 mov eax, [esp+lBh+idx]
89 46 46 mov [esi+flag.task idx], eax
8B 44 24 24 mov eax, [espt+lBh+arg 8]
89 45 4A mov [esi+flag.tmp path run], eax
8D 45 4E lea eax, [esit+iEh]
85 ED test ebp, ebp
75 @6 jnz short loc 243533
Y Y
S@ push eax
8B EO9 maw ebp, ecx
8D 44 24 1C lea eax, [esp+2Ch+comp_name]
=1e] push eax
86 DA mow ebx, edx
FF 95 B6 BE @8 o8 call dword ptr [ebp+2EBch] ; <kernel32.GetComputerNameA:
FF 74 24 18 push [esp+28h+var_18]
80 44 24 1C lea eax, [esp+2Ch+comp name]
S@ push eax
8D BS 35 82 88 B8 lea eax, [ebp+235h]
S@ push eax
FF 95 E6 BF 88 o8 call dword ptr [ebpteFich] ; <ntdll.RtlMoveMemory:
33 C9 Xor eCX, BCX

In some cases SmokelLoader was observed to be using decoy C2 to put off analysts. In
these instances the sample stored a fake value using its standard encryption technique
which would be dumped by static extractors, and the actual C2 was simply stored as a
plaintext string. Triage can now distinguish between the fake and real C2 strings and only
reports the legitimate ones in the report. This analysis is a good example of this behaviour.

7/9

https://tria.ge/200814-2lq9gr85q2/behavioral1

Ransomware Support

Ransomware is extremely active these days and new variants and families are constantly
being released, with even relatively basic ones sometimes managing to achieve infections in
the wild. This week we’'ve added support for a number of these which have gained attention
over recent weeks.

LockBit and BigLock Analysis:

200827-dmry7lp4cs

The sample referenced above came to our attention recently as a slightly unusual case. It
drops multiple families, including 2 different ransomware - Lockbit and BigLock. Lockbit is run
first, encrypting files with it’s distinctive .lockbit extension, then another re-encrypts the
files with a second layer.

For Lockbit, ransom note extraction has been improved to now also dump details like
Telegram contacts, and we have fixed an issue that was preventing some URLs being
dumped from certain variants of the note.

We have also added support for BigLock, a family we previously did not have family
classification for. The note and family tag should now be correctly displayed in the report.

Along with this, we have improved/added detection and ransom note support for:

e DarkSide ransomware

e Conti ransomware

o 200826-jdzf5d33aa
o 200826-k8ykljftvn
o JackPot Ransomware

200826-3jfzxsp9yx
e DeathRansom

200803-bktwtzlfze

Infostealers

We have added a number of yara rules and other detections for a few infostealer families.
Where possible we have also used behaviour to identify them, but often one infostealer’s
actions look much like another, so our focus has generally been on static techniques.

404Keylogger

8/9

https://tria.ge/200827-dmry7lp4cs/behavioral1
https://www.bleepingcomputer.com/news/security/darkside-new-targeted-ransomware-demands-million-dollar-ransoms/
https://www.zdnet.com/article/conti-ryuk-joins-the-ranks-of-ransomware-gangs-operating-data-leak-sites/
https://tria.ge/reports/200826-jdzf5d33aa/
https://tria.ge/reports/200826-k8ykljftvn/
https://twitter.com/GrujaRS/status/1298510932340072449
https://tria.ge/200826-3jfzxsp9yx/
https://www.fortinet.com/blog/threat-research/death-ransom-new-strain-ransomware
https://tria.ge/200803-bktwtzlfze/behavioral1

Infostealer which has been exploiting COVID-19 related lures to gain infections. First
appeared around August 2019.

Analyses:

o 200818-t1jkbm8sc6
o 200624-gbxe29kehe

Kutaki

Keylogger with some other basic infostealer functionality like taking screenshots and
harvesting data on the clipboard. Includes a range of anti-VM and anti-analysis techniques,
although mostly a bit dated.

Analyses:

e 200805-k11vh8yarj
e 200805-arnebas9fa

XpertRAT

Backdoor/stealer which can carry out a wide range of operations on an infected machine
depending on the instructions received. Can also act as a dropper for other families.

Analyses:

 200624-3pqyjfy64j
e 200817-h4pjdtget2

9/9

https://www.lastline.com/labsblog/infostealers-weaponizing-covid-19/
https://tria.ge/200818-t1jk5m8sc6/behavioral1
https://tria.ge/200624-gbxe29kehe/behavioral1
https://cofense.com/kutaki-malware-bypasses-gateways-steal-users-credentials/
https://tria.ge/200805-k11vh8yarj/behavioral1
https://tria.ge/200805-arnebas9fa/behavioral1
https://tria.ge/200624-3pqyjfy64j/behavioral1
https://tria.ge/200817-h4pjdtget2/behavioral1

