
1/8

RATs and Spam: The Node.JS QRAT
trustwave.com/en-us/resources/blogs/spiderlabs-blog/rats-and-spam-the-nodejs-qrat/

The Qua or Quaverse Remote Access Trojan (QRAT) is a Java-based RAT that can be used to gain
complete control over a system. Introduced in 2015, QRAT was marketed as an undetectable Java RAT
and is offered under the software-as-a-service model. Just after its original debut, we blogged about
QRATs being spammed. As shown in Figure 1, the functionality of the spammed QRATs can be
extended through the plugins offered by Quaverse.

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/rats-and-spam-the-nodejs-qrat/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/quaverse-rat-remote-access-as-a-service/
https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e95db39b200b-pi

2/8

Figure 1: The website of Quaverse, captured from the 2015 blog, offering plugins for QRATs
Recently, we have encountered more spam campaigns that attempt to spread QRATs. The initial
malware contains a subscription account for QHub (user:<digits>@qhub-
subscription[.]store[.]qua[.]one), a service that offers a single interface to control remote machines. Its
domain qua.one contains the same logo as to Quaverse’s website we have seen way back in 2015.

Figure 2: The QHub service is offered as a Premium Service

Malware Analysis

Figure 3: The spam campaign flow

The JAR Downloader

This spam campaign using QRAT malware has multi-stage downloaders. The first one is a JAR file that
may arrive as an email attachment or can be downloaded from a link contained in a spam message. All
the JAR files we have collected related to this campaign are obfuscated using the Allatori Obfuscator –
the class names all have the same name and length but have different case.

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/quaverse-rat-remote-access-as-a-service/
https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e95db3c4200b-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b026bde8b0570200c-pi
http://www.allatori.com/

3/8

Figure 4: The JAR attachment Spec#0034.jar is obfuscated with Allatori

Figure 5: The HTML downloader attached to the malspam has link to the first stage downloader hosted
in a cloud service platform

The first downloader has 2 major functions. These are setting up the Node.Js platform onto the system,
and then downloading and executing the second-stage downloader.

https://npercoco.typepad.com/.a/6a0133f264aa62970b026be409cdc6200d-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b026bde8b05b3200c-pi

4/8

Figure 6: The code snippet of java.exe’s memory dump when the attachment Spec#0034.jar from
Figure 4 was executed

Firstly, upon the execution of the JAR file, the process architecture of the system will be checked, and
that information will be used in downloading the appropriate Node.js for the machine. The JAR files we
observed downloaded Node.Js version 13.13.0 from https://nodejs.org/dist/v13.13.0/node-v13.13.0-win-
<x86|x64>.zip and extracted its content at %userprofile%/qnode-node-v13.13.0-win-<x86|x64>.zip. The
JAR files were designed to run in Windows environments only.

Secondly, the JAR file Spec#0034.jar downloaded wizard.js from its command and control servers
(C&Cs) then saved it under the qnodejs folder located inside the Node.js installation path. Then, the
JAR file executed wizard.js with the C&Cs and the QHub service subscription user as arguments, as
shown in Figure 6.

The Node.Js Downloader

The downloaded file wizard.js is the second stage downloader written in Node.Js. This script file is
responsible for setting the persistence of this threat, and the downloading and execution of the payload.
Just like the JAR file, this supports the Windows platform only. Without the arguments from the JAR file,
this script will not work.

We were able to obtain the file wizard.js, from hxxps://environment[.]theworkpc[.]com/scripts/wizard[.]js,
through the JAR file from Figure 5. The file wizard.js is encrypted using Base64. Looking through its
decrypted code, this script has its own defined modules.

Figure 7: The code snippet of the downloaded second stage downloader

https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e95db4f8200b-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b026be409cefd200d-pi

5/8

Figure 8: The modules of wizard.js

The first main function of wizard.js is to set its persistence. The file qnode-<8 hex>.cmd will serve as the
autorun file and written in it are the same arguments that the JAR file downloader set on wizard.js (see
Figure 6) appended with a “--delegate” command.

Figure 9: The two main functions of wizard.js

Then, based on the platform and architecture of the system its running on, wizard.js will download the
main malware. Using the C&Cs from the JAR file in Figure 4, we were able to download qnodejs-win32-
ia32.js on 24-July-2020.

Before downloading, as shown in Figure 9, the script wizard.js verified the sha1 of the main malware
qnodejs-win32-ia32.js through the file qnodejs-win32-ia32.sha256. Lastly, the main malware was
executed using the same arguments supplied to wizard.js in Figure 6 plus a “serve” command after the
path of qnodejs-win32-ia32.js.

Figure 10: The Node.Js process which executes the payload qnodejs-win32-ia32.js

The Payload – Node.Js QRAT

https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e95db5b5200b-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b026bde8b06e3200c-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b026be409cf60200d-pi

6/8

Just like the downloader wizard.js, the main payload qnode-win32-ia32.js is written in Node.Js, its code
is encrypted with Base64, and it has its own written modules. It contains an encrypted Node.Js
packages folder node_modules hence its size is almost 12KB.

The Node.Js script uses the string “qnode-service” as the node command name and requires the
arguments --central-base-url and --group when executed.

Figure 11: The help menu of the qnode-win32-ia32.js

The QRAT qnode-win32-ia32.js has the following functionalities:

obtain system information
perform file operations
acquire credentials of certain applications

Some of the information, like the machine’s UUID, tags, and labels generated by the malware, will be
written in the config file %userprofile%/<hex>-config.json. Meanwhile, the malware will use the service
hxxps://wtfismyip[.]com to obtain network information.

Figure 12: The filename of the config and error logs were prepended with the hex representation of the
QHub subscription account shown in Figure 6

Figure 13: Code snippet of the data retrieved from the service hxxps://wtfismyip[.]com/json

https://npercoco.typepad.com/.a/6a0133f264aa62970b026be409cf7d200d-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e95db62b200b-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b026bde8b073e200c-pi

7/8

Figure 14: The applications chrome, firefox, thunderbird, and outlook are supported in this QRAT’s
password-recovery functionality

This threat will communicate to its C&Cs through the Websocket connection protocol and below is the
list of commands related to the 3 functions of the QRAT qnode-win32-ia32.js file mentioned above.

Figure 15: List of commands

Summary

Remote access trojans are one of the commodity malware nowadays. With services like QHub, RATs
can be a more attractive instrument to the threat actors as the machines infected by the RATs can be
easily monitored in an already available environment they offer. The QRAT and its downloader are
currently supporting the windows platform for now. Since they leveraged Node.Js which is a cross-
platform, there is a possibility that this threat will be enhanced to support other platforms in the future.

In terms of mitigation, we recommend blocking inbound emails with Java files outright at the email
gateway. We have also added protection for this threat to the Trustwave Secure Email Gateway for our
customers.

IOCs

https://npercoco.typepad.com/.a/6a0133f264aa62970b026bde8b0756200c-pi
https://npercoco.typepad.com/.a/6a0133f264aa62970b026bde8b07ca200c-pi
https://www.trustwave.com/en-us/services/technology/secure-email-gateway/

8/8

Spec#0034.jar (12139 bytes) SHA1: 36DA7F23828283B6EA323A46806811F8312DD468
Legal_Proceeding_concerning_Overdue_invoices_pdf.jar (12,241 bytes) SHA1:
42d843c74e304d91297e21e748f4b528df422316
wizard.js (14433 bytes) SHA1: D6B1D3317C0D938C8AF21F1C22FD1B338A06B1C2
qnodejs-win32-ia32.js (11916833 bytes) SHA1: 31F541074C73D02218584DF6C8292B80E6C1FF7D

hxxps://legalproceedings[.]uc[.]r[.]appspot[.]com/Legal_Proceeding_concerning_Overdue_invoices_pdf[.]jar
hxxps://rtdqhub[.]home-webserver[.]de/
hxxps://rtdqhub[.]redirectme[.]net
hxxps://environment[.]theworkpc[.]com
hxxps://environment[.]spdns[.]org

