
1/20

Arseniy Sharoglazov August 19, 2020

Kerberoasting without SPNs
swarm.ptsecurity.com/kerberoasting-without-spns/

Author

Arseniy Sharoglazov
Penetration Testing Expert

_mohemiv

Service principal names (SPNs) are records in an Active Directory (AD) database that
show which services are registered to which accounts:

An example of an account that has SPNs

https://swarm.ptsecurity.com/kerberoasting-without-spns/
https://swarm.ptsecurity.com/author/arseniy-sharoglazov/
https://twitter.com/_mohemiv


2/20

If an account has an SPN or multiple SPNs, you can request a service ticket to one of these
SPNs via Kerberos, and since a part of the service ticket will be encrypted with the key
derived from the account’s password, you will be able to brute force this password offline.
This is how Kerberoasting works.

There is a way to perform the Kerberoasting attack without knowing SPNs of the target
services. I’ll show how it could be done, how it works, and when it could be useful.

Kerberos Basics

Kerberos is an open source binary protocol based on the ASN.1 format. The core of
Kerberos is key distribution center (KDC) services, which use 88/tcp and 88/udp ports. In the
Active Directory environment they are installed on each of the domain controllers.

Let’s run the GetUserSPNs.py tool from Impacket to demonstrate how Kerberoasting works:

Performing the Kerberoasting attack in a lab environment
First, the tool connects to LDAP, and finds users which have SPNs and which are not
machine accounts. Every machine account in the AD has a bunch of SPNs, but their service
tickets are not brute-forceable because machine accounts have passwords that are 240
bytes long.



3/20

Then, the tool connects to a KDC, and for each of the discovered accounts gets a service
ticket using one of its SPNs. In our example only one account was discovered, and the tool
chosed “MSSQLSvc/sp-sql:1433” SPN to request a ticket.

It’s not important whether chosen services are functioning; the existence of an SPN in the
AD database is sufficient for the attack.

Here is the traffic dump of this GetUserSPNs.py launch, so now we can examine all the
described stages in detail:

Traffic dump of the Kerberoasting attack

How clients get TGTs

Each client must authenticate to the KDC and obtain a ticket-granting ticket (TGT), which will
allow them to ask for any number of service tickets going forward.

This mechanism is used to reduce the number of needed authentications, and there is no
way to bypass it and request a service ticket without having a TGT.

Unauthenticated AS-REQ / Preauth Request

AS-REQ packets serve to ask for TGTs.

In AS-REQ clients specify the special “krbtgt/DomainFQDN” SPN in the sname field, and the
principal name of the account to which the TGT is being requested for in the cname field:



4/20

Content of the unauthenticated AS-REQ packet (#7)
The first AS-REQ packet is sent without authentication data to maintain backwards
compatibility. It will succeed only if the DONT_REQ_PREAUTH flag in the Active Directory
for the target account is set.

The response for AS-REQs should contain a structure that is encrypted and signed with the
key derived from the client account’s password, so if AS-REQs worked without any
authentication, anyone would be able to brute force anyone else’s password offline.

This is called an ASREPRoasting attack, and in Impacket it can be performed by the
GetNPUsers.py script:

Performing an ASREPRoasting attack using GetNPUsers.py from Impacket
One application of ASREPRoasting is Targeted Kerberoasting. It relies on intentionally
setting the DONT_REQ_PREAUTH flag for accounts you control in the AD, and getting their
$krb5asrep$ hashes.



5/20

Since the “Administrator” account we used doesn’t have the DONT_REQ_PREAUTH flag
set, the KDC sent a KRB-ERR packet to the client with the KRB_PREAUTH_REQURED
error. This packet is called Preauth Request.

Content of the KRB-ERR packet (#8)
If the “Administrator” account didn’t exist, we would get the
KDC_ERR_C_PRINCIPAL_UNKNOWN error. This is the feature that is used in Kerberos
User Enumeration attacks.

Authenticated AS-REQ

Let’s examine the next AS-REQ packet:



6/20

Content of the authenticated AS-REQ packet (#9)
The next AS-REQ is basically the same request as the first one, but it contains data which
could authorize the client. This data is a special structure that contains the current
timestamp, and this structure is encrypted and signed with the key derived from the
account’s password.

Keys derived from account’s passwords are known as Kerberos Keys, and they’re calculated
differently depending on the utilized encryption algorithm:

AES-128 and AES-256: the key is calculated from the PBKDF2 hash of the password
RC4: the key is calculated from the NT hash of the password (always used with the
Pass-The-Hash attack)
DES: the key is calculated directly from the password

Using a client principal name in the request, the KDC tries to look up the client’s account in
the AD database, extract its precalculated Kerberos keys, and verify the client’s identity.

AS-REP

After the KDC verifies the client’s identity, it sends an AS-REP packet that contains data the
client can construct a TGT memory object from:



7/20

Content of the AS-REP packet (#10)
The TGT itself is encrypted and signed with the kerberos key of the krbtgt account, so it’s
intended to be unpacked only on KDC sides. It contains a session key, metadata, and the
client’s Privileged Attribute Certificate (PAC). A PAC includes the client’s name, security
identifier (SID), and groups.

In order for a client to use a TGT, it needs to construct a TGT memory object, which will
contain the TGT itself, its session key, and all the metadata. Clients extract the session key
from the part of an AS-REP that is encrypted by their keys.

How clients get Service Tickets

After a client constructs a TGT memory object, it can ask for any number of service tickets
using TGS-REQ packets. The KDC will respond with TGS-REP packets when these
requests are accepted.

TGS-REQ

A TGS-REQ contains a service principal name that the ticket is requesting for, a TGT, and a
structure encrypted with the TGT session key and containing the current timestamp:



8/20

Content of the TGS-REQ packet (#11)
When the KDC receives a TGS-REQ, it decrypts the TGT, extracts the session key, and
checks the client’s identity.

TGS-REP

TGS-REP packets are used to transfer service tickets to KDC clients.

After the KDC verifies the client’s identity, the following steps are happening:

1. The KDC checks if the TGT is still valid according to the decrypted timestamps;
2. If more than 15 minutes have passed since the TGT was issued, the KDC recalculates

the decrypted PAC, and check if the client has not been disabled in the Active
Directory;

3. The KDC looks up an account that the sent service principal name is resolving to;
4. The KDC extracts the kerberos key of the discovered account;



9/20

5. The KDC constructs a service ticket, which consists of the PAC and the service ticket
session key; the service ticket is encrypted and signed with the service account’s
kerberos key;

6. The KDC creates a structure with the service ticket session key and encrypts and signs
it with the TGT session key.

Both the service ticket and the structure with the service ticket session key are included in
the TGS-REP packet:

Content of the TGS-REP packet (#12)
The encrypted part of the service ticket is the part that is brute forced in the Kerberoasting
attack.

Exploring formats of Principal Names

Let’s examine principal names in the AS-REQ packet we gathered before:



10/20

An example

of principal names in Kerberos traffic
Client principal names are passed in cname fields, and service principal names are sent in
sname fields. All principal names are accompanied by an integer called the principal name
type.

Principal names are usually split by the “/” character into a sequence of strings. For example,
the principal name krbtgt/CONTOSO.COM in Kerberos traffic consists of two strings: krbtgt
and CONTOSO.COM.

According to RFC 4120, cname and sname fields have different purposes, but the structure
of these fields is identical:

KDC-REQ-BODY    ::= SEQUENCE { 
kdc-options  [0] KDCOptions, 
cname        [1] PrincipalName OPTIONAL 
realm        [2] Realm 
sname        [3] PrincipalName OPTIONAL, 
... 
} 

PrincipalName   ::= SEQUENCE { 
name-type    [0] Int32, 
name-string  [1] SEQUENCE OF KerberosString 
} 

KerberosString  ::= GeneralString (IA5String)

https://tools.ietf.org/html/rfc4120


11/20

The identical structure of cname and sname fields caught my attention, and I decided to test
different options of their usage in the Kerberos protocol.

The Kerberos Secret

It was discovered that Windows KDC services treat cname and sname fields by the same
function set, and it’s irrelevant which format of a principal name you choose at any given
time.

All Principal Names that resolve to the same account are equal

If you have an SPN value in a Kerberos packet, you can substitute it to the SAM Account
Name (SAN) value of the account the SPN belongs, and nothing will break:

An example of a TGT-REQ packet with a SAN
This way you can perform the Kerberoasting attack without knowing any SPN of the target
account. But the existence of at least one SPN for the target account will continue to be
needed.

Bonus: Revisiting S4U and AnySPN attacks

I examined Impacket source code, and I found two interesting places which are closely
related to the discovered technique, but not related to Kerberoasting.

S4U2Self and S4U2Proxy Requests with SAM Account Names



12/20

Let’s try to abuse Resource-Based Constrained Delegation using getST.py form Impacket:

An example of abusing Resource-Based Constrained Delegation using Impacket
Here we have the “user01” account that has the “http/test” SPN and privileges to delegate
access to any SPN of the “SRV02$” account.

According to the specification (S4USelf KRB_TGT_REQ, S4U2Proxy KRB_TGS_REQ), the
user01’s service should use its SPN in S4U2Self and S4U2Proxy requests. However, you
can see that Impacket uses SANs in such requests:

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/36a72c74-7995-4cba-a2d2-6c9471a2a6af
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/ddb2cafd-1f01-4834-b52a-d4a5b34cd960


13/20

Traffic Dump of Impacket’s S4U2Self request
These requests don’t comply with the specification, but succeed because Windows KDCs
are insensitive to given principal name formats.

AnySPN Attack

Impacket implements a thing called AnySPN attack. This attack tries to modify the SPN in
the given service ticket file, when it’s different from the target service SPN:



14/20

Performing the AnySPN attack using Impacket
Alberto Solino wrote an excellent article Kerberos Delegation, SPNs and More explaining
how it works.

Here is the main section from this article:

A fragment of Alberto Solino’s article
Briefly, Benjamin Delpy, Ben Campbell and Alberto Solino noticed that a service ticket for
Service A on Host A might work for Service B on Host A.

Actually, if we decrypt any service ticket’s encrypted part, we will see that it doesn’t contain
any SPNs:

https://www.secureauth.com/blog/kerberos-delegation-spns-and-more/


15/20

Decrypting the service ticket’s encrypted part using the service account’s password

Printing the information contained in the service ticket’s encrypted part



16/20

The service ticket’s encrypted part contains only the ticket’s session key, the metadata, and
the authenticating user’s PAC. The service ticket’s SPN is contained in the unencrypted and
unsigned part of the protocol, and it may simply not be taken into account by the client.

A Service Ticket is valid for all services run by its service account

So, if you wondered which SPN a service ticket is issued to when it’s requested without an
SPN, now you know that the service ticket just don’t contain any.

Bonus: Playing with Principal Name Types

The structure of cname and sname fields contain an integer called Principal Name Type.
The RFC 4120 specification defines 9 possible values for it:

An excerpt from RFC 4120: 6.2. Principal Names
I’ve done some research, and I’ve created a table with the actual Principal Name Types
values and their meanings in Windows:

Name Type Value Meaning

NT-UNKNOWN 0 Represents SPN and SAN formats

https://tools.ietf.org/html/rfc4120#page-99


17/20

NT-PRINCIPAL 1 Equal to NT-UNKNOWN

NT-SRV-INST 2 Equal to NT-UNKNOWN

NT-SRV-HST 3 Equal to NT-UNKNOWN

NT-SRV-XHST 4 Represents SPN format

NT-UID 5 Not supported

NT-X500-PRINCIPAL 6 Represents DN format

NT-SMTP-NAME 7 Equal to NT-UNKNOWN

NT-ENTERPRISE 10 Represents UPN, SAN and multiple
DomainName+SAN formats

NT-MS-PRINCIPAL -128 Represents SAN and multiple DomainName+SAN
formats

NT-MS-PRINCIPAL-
AND-ID

-129 Equal to NT-MS-PRINCIPAL

NT-ENT-PRINCIPAL-
AND-ID

-130 Equal to NT-X500-PRINCIPAL

* Equal to NT-UNKNOWN

I found NT-ENTERPRISE type more valuable than the commonly used NT-UNKNOWN one.
It supports the following bunch of name formats:

userPrincipalName
sAMAccountName
sAMAccountName@DomainNetBIOSName
sAMAccountName@DomainFQDN
DomainNetBIOSName\sAMAccountName
DomainFQDN\sAMAccountName

Note that if you use the SRV01 string as a sAMAccountName, and the SRV01 account does
not exist, and the SRV01$ account exists, this name will be treated as a principal name of
the SRV01$ account.

Other interesting Principal Name Types is NT-X500-PRINCIPAL. It supports DNs in the RFC
1779 structure. Here are three examples of how the same Active Directory object can be
written in this structure:

CN=SQL ADMIN,OU=LAB Users,DC=CONTOSO,DC=COM 
CN="SQL ADMIN";OU="LAB Users";DC="CONTOSO";DC="COM" 
OID.2.5.4.3=SQL ADMIN,OU=LAB Users,DC=CONTOSO,DC=COM

https://tools.ietf.org/html/rfc1779


18/20

Unfortunately, the NT-X500-PRINCIPAL type is not supported across forest trusts.

The Technique’s Application in Kerberoasting

I’ve added the usage of NT-ENTERPRISE and NT-MS-PRINCIPAL types to Impacket’s
GetUserSPNs.py. Let’s see three common scenarios when these changes are necessary for
Kerberoasting to succeed.

Kerberoasting with no access to LDAP

You might find yourself in a situation where you have access to a KDC service, you have an
account list obtained (for example, via a RID cycling attack), and you don’t have SPNs.

Since you no longer need SPNs, you can request service tickets just by a user list using the
new -userfile option:

Performing Kerberoasting by a user list using the new GetUserSPNs.py
The -userfile option utilizes the NT-ENTERPRISE type to look up accountd from the specified
file.

Kerberoasting accounts with incorrect SPNs

There are two types of SPNs for which KDCs prohibit returning tickets:

Wrong syntax SPNs
Duplicate SPNs, i.e. when the same SPN values are assigned to multiple accounts

If a KDC finds that one of these is the case, it returns the
KDC_ERR_S_PRINCIPAL_UNKNOWN error as if the passed SPN didn’t exist:



19/20

Kerberoasting an account with an incorrect SPN
The new GetUserSPNs.py wraps the account list from LDAP to NT-MS-PRINCIPAL type and
doesn’t utilize SPNs, so you will get the hashes even from misconstrued SPNs:

Kerberoasting an account with an incorrect SPN using the new GetUserSPNs.py
Internally the “DomainFQDN\sAMAccountName” format is utilized, and the “\” character is
changed to “/” in the output to comply the username with the Impacket format and prevent its
escaping in other tools.

Kerberoasting accounts with NetBIOS Name SPNs via Forest Trusts

When you ask for a service ticket for an SPN from another domain, and this SPN has a
hostname in a NetBIOS name format, your KDC won’t be able to find the target service:

Kerberoasting an account with a NetBIOS Name SPN via a Forest Trust



20/20

With the new GetUserSPNs.py file you will never get the
KDC_ERR_S_PRINCIPAL_UNKNOWN for such services:

Kerberoasting an account with a NetBIOS Name SPN via a Forest Trust using the new
GetUserSPNs.py

Afterwords

I hope you found the information about requesting service tickets without specifying SPNs
useful, and the description of the Kerberos protocol and the “Bonus: Revisiting S4U and
AnySPN attacks” section helpful as well.

Below is the list of tools which currently support described in the article techniques.

Impacket

The updated GetUserSPNs.py script is available in the official Impacket repository:
https://github.com/SecureAuthCorp/impacket

Thanks @agsolino for merging!

Rubeus

Charlie Clark (@exploitph) added the support of NT-ENTERPRISE principals to Rubeus:
PR#60

https://github.com/SecureAuthCorp/impacket
https://twitter.com/agsolino
https://twitter.com/exploitph
https://github.com/GhostPack/Rubeus/pull/60

