FritzFrog: A New Generation Of Peer-To-Peer Botnets

¢ guardicore.com/2020/08/fritzfrog-p2p-botnet-infects-ssh-servers/

By Ophir Harpaz

Executive Summary

o Guardicore has discovered FritzFrog, a sophisticated peer-to-peer (P2P) botnet which
has been actively breaching SSH servers since January 2020.

» Golang-Based Malware: FritzFrog executes a worm malware which is written in
Golang, and is modular, multi-threaded and fileless, leaving no trace on the infected
machine’s disk.

o Actively Targeting Government, Education, Finance and more: FritzFrog has
attempted to brute force and propagate to tens of millions of IP addresses of
governmental offices, educational institutions, medical centers, banks and numerous
telecom companies. Among those, it has successfully breached more than 500
servers, infecting well-known universities in the U.S. and Europe, and a railway
company.

o Sophistication: FritzFrog is completely proprietary; its P2P implementation was written
from scratch, teaching us that the attackers are highly professional software
developers.

 Interception: Guardicore Labs has developed a client program in Golang which is
capable of intercepting FritzFrog’s P2P communication, as well as joining as a network
peer.

1/10

https://www.guardicore.com/2020/08/fritzfrog-p2p-botnet-infects-ssh-servers/

o Attribution: While we are unable to attribute the FritzFrog botnet to a specific group,
we have found some resemblance to a previously-seen P2P botnet named Rakos.

Introduction

FritzFrog is a highly sophisticated peer-to-peer (P2P) botnet that has been actively breaching
SSH servers worldwide. With its decentralized infrastructure, it distributes control among all
its nodes. In this network with no single point-of-failure, peers constantly communicate with
each other to keep the network alive, resilient and up-to-date. P2P communication is done
over an encrypted channel, using AES for symmetric encryption and the Diffie-Hellman
protocol for key exchange.

Unlike other P2P botnets, FritzFrog combines a set of properties that makes it unique: it is
fileless, as it assembles and executes payloads in-memory. It is more aggressive in its brute-
force attempts, yet stays efficient by distributing targets evenly within the network. Finally,
FritzFrog's P2P protocol is proprietary and is not based on any existing implementation.

The malware, which is written in Golang, is completely volatile and leaves no traces on the
disk. It creates a backdoor in the form of an SSH public key, enabling the attackers ongoing
access to victim machines. Since the beginning of the campaign, we identified 20 different

versions of the malware executable.

In this report, we will describe how the FritzFrog campaign was discovered, the nature of its
P2P network and the malware’s inner workings — including the infection process, command
encryption and volatile behavior.

Guardicore Labs provides a Github repository containing a detection script as well as a list of
Indicators of Compromise (IOCs) for this campaign.

2/10

https://github.com/guardicore/labs_campaigns/tree/master/FritzFrog

Exploring FritzFrog

Guardicore Labs first noticed this campaign as part of its ongoing Botnet

Encyclopedia research. On January 9, new attack incidents appeared where malicious
processes named ifconfig and nginx were executed. We started monitoring the campaign’s
activity, which rose steadily and significantly with time, reaching an overall of 13k attacks on
Guardicore Global Sensors Network (GGSN). Since its first appearance, we identified 20
different versions of the Fritzfrog binary.

Number of FritzFrog Attacks Seen in
Guardicore Global Sensors Network

1200

g

Number Incidents in GGSN

NN

| | | | 1 I
Mar 2020 Apr 2020 May 2020 Jun 2020 Jul 2020 Aug 2020

3/10

https://www.guardicore.com/botnet-encyclopedia/

What was intriguing about this campaign was that, at first sight, there was no apparent
command and control (CNC) server being connected to. It was shortly after the beginning of
the research when we understood no such CNC existed in the first place.

To intercept the FritzFrog network, Guardicore Labs has developed a client program in
Golang, which performs the key-exchange process with the malware and is capable of
sending commands and receiving their outputs. This program, which we named frogger,
allowed us to investigate the nature and scope of the network. Using frogger, we were also
able to join the network by “injecting” our own nodes and participating in the ongoing P2P
traffic.

FritzFrog was found to brute-forces millions of IP addresses, among which are governmental
offices, educational institutions, medical centers, banks and numerous telecom companies. It
has successfully breached over 500 SSH servers, including those of known high-education
institutions in the U.S. and Europe, and a railway company.

New Generation P2P

Why “New-Generation”?

FritzFrog has a special combination of properties, which makes it unique in the threat
landscape:

 Fileless — FritzFrog operates with no working directory, and file transfers are done in-
memory using blobs.

o Constantly updating — databases of targets and breached machines are exchanged
seamlessly.

o Aggressive — Brute-force is based on an extensive dictionary. By comparison, DDG, a
recently discovered P2P botnet, used only the username “root”.

o Efficient — Targets are evenly distributed among nodes.

e Proprietary— The P2P protocol is completely proprietary, relying on no known P2P
protocols such as uTP.

Once a victim is successfully breached, it starts running the UPX-packed malware, which
immediately erases itself. The malware process runs under the names ifconfig and nginx, to
minimize suspicion. As part of its startup process, the malware begins listening on port 1234,
waiting for commands. The first commands which a new victim receives are responsible for
syncing the victim with the database of network peers and brute-force targets.

4/10

Traffic on a non-standard port, such as 1234, can be easily detected and blocked by firewalls
and other security products. Thus, FritzFrog’s author employed a creative technique to
evade detection and stay under the radar. Instead of sending commands directly over port
1234, commands are sent to the victim in the following manner: The attacker connects to the
victim over SSH and runs a netcat client on the victim’s machine, which in turn connects to
the malware’s server. From this point on, any command sent over SSH will be used as
netcat’s input, thus transmitted to the malware.

5/10

https://www.guardicore.com/wp-content/uploads/2020/08/traffic.jpg

Attacker Node

v

MALWARE ®

55“ (:<7Inl‘!err.:gl,'c"l_iI

nc localhost 1234

getstatus

Victim Node

® MALWARE)

The Fritzfrog attackers implemented an encrypted command channel with over 30 different
commands. Command parameters and responses are transferred in designated data
structures and serialized (“marshalled”) to JSON format. Prior to sending, the data is
encrypted using AES symmetric encryption and encoded in Base64. To agree upon the
encryption key, the involved nodes use the Diffie-Hellman key exchange protocol.

FritzFrog’'s P2P

Commands
Database Operations Payloads Administration
Operations Operations
getdb resetowned runscript getstatus
pushdb pushowned pushbin getstats
pushdbzip putowned getbin getblobstats
getdbzip getownedgetdeploy sharefiles getpeerstats
getdbnotargetsgettargets putdeploying getvotestats
pushtargets deploystatus mapblobs
forcetargets getlog
puttargetpoolputblentry pushlog
getargs
proxy
ping
comm
exit

6/10

Nodes in the FritzFrog network keep in close contact with each other. They constantly ping
each other to verify connectivity, exchange peers and targets and keep each other synced.
The nodes participate in a clever vote-casting process, which appears to affect the
distribution of brute-force targets across the network. Guardicore Labs observed that targets
are evenly distributed, such that no two nodes in the network attempt to “crack” the same
target machine.

Delving into the Malware

FritzFrog’s binary is an advanced piece of malware written in Golang. It operates completely
in-memory; each node running the malware stores in its memory the whole database of
targets and peers. The malware spawns multiple threads to perform various tasks
simultaneously, as detailed in the table below.

FritzFrog defines the following states with regards to the management of victim and target
machines.

1. Target — a machine found in the target queue will next be fed to the Cracker module,
which in turn will scan and try to brute-force it;

2. Deploy — a machine which was successfully breached is queued for malware infection
by the DeployMgmt module;

3. Owned — a machine which was successfully infected will be added to the P2P network
by the Owned module.

MODULE NAME FUNCTIONALITY

Cracker Brute force targets

CryptoComm + Encrypted P2P communication

Parser

CastVotes Voting mechanism for target distribution

TargetFeed Ingesting targets from peers

DeployMgmt Worm module, deploying malware on breached (“cracked”)
machines

Owned Connecting to victims after malware deployment

Assemble In-memory file assembling from blobs

Antivir Competitors elimination. Kills CPU-demanding processes with the
string “xmr”

Libexec Monero Cryptominer

7/10

Each node that runs the malware has a worker thread which is responsible for receiving
commands, parsing them and dispatching them to the appropriate function in the code.

The malware is transient — it does attempt to survive system reboots. However, a backdoor is
left to enable future access to the breached victim, whose login credentials are saved by the
network peers. The malware adds a public SSH-RSA key to the authorized_keys file. This
simple backdoor allows the attackers — who own the secret private key — for passwordless
authentication, in case the original password was modified. FritzFrog has used only a single
public key which is given in the box below.

ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABAQDJIYZIsncBTFc+iCRHXkeGTFA67j+kUVF7h/IL+shORXIn7yDNOVEXZz71

The malware file runs various shell commands on the local machine, some of them
periodically, to monitor the system state. For example, it runs free -m to check for available
RAM, uptime, journalctl -S @0 -u sshd to monitor SSH logins, and other commands which
output the CPU usage statistics. These statistics are available for other nodes in the network
to consume, and are used to determine, for example, whether to run a cryptominer or not.

The malware runs a separate process — named libexec — to mine the Monero coin. The
miner is based on the popular XMRig miner and connects to the public
pool web.xmrpool.eu over port 5555.

An Evil Torrent-Like Network

Fritzfrog relies on the ability to share files over the network, both to infect new machines and
run malicious payloads, such as the Monero cryptominer.

8/10

To share and exchange files between nodes, Fritzfrog uses a stealthy, fileless approach.
Files are split into blobs — bulks of binary data — which are kept in memory. The malware
keeps track of the available blobs by storing them in a map together with each blob’s hash
value.

When a node A wishes to receive a file from its peer, node B, it can query node B which
blobs it owns using the command getblobstats. Then, node A can get a specific blob by its
hash, either by the P2P command getbin or over HTTP, with the URL https://:1234/. When
node A has all the needed blobs — it assembles the file using a special module named
Assemble and runs it.

fritzfrog>frogger.exe -frog=NEEE - conmand=getblobstats
2020/08/10 17:25:46 Connecting to INNIIIIEEEEEN- 1234
2020/08/10 17:25:46 Successfully connected to fritzfrog
2028/08/10 17:25:46 Successfully sent my public key

2020/08/10 17:25:50 Sending command getblobstats

Peer blob stats

70386][770amd64][77@0arm] [77@1ibexec][778mips |

Data age: [!!1!!!1’] [2*!32!!] [t!*’!i* ['!!il!-t*]

i |]
[2 2 Data age: [Il Ersnascd M| 1L 11]
[—22 Data age: [::.4::::**] l**:u::r::] [*t*::ﬁ**] l’] [t:«xs**]
[_22 Data dge: [t:ttt*:] ltxxttt:] ltattt**] [lx:t] [ttttttl‘]
[_z)?z ')dt(’ (’H(): [!lti“t] |!Kttllt] [ti'tt“] I‘Xll] [-ll‘!'!]
[22 Data age: [] Gubemtunhened 8] | 8 Bt]
[_22 Data age: [FP%%axs] [**32XIX] [XBXKERX] [EXXX] [SEXXREIK]
1—22 Data age: [*xeaxs] [*xsaaax] [SRXKERR] [EX3K] [*E2x22K]
[2 2 Data age: s [FRssxs] [#525528] [SEEERAR] [R22%] [SE2EEK)

end

Attribution

Tracking the operators of a P2P botnet is a complicated task; due to its distributed nature,
commands can be sent to and from any node in the network. Still, we’ve attempted to
compare it to previous P2P botnets seen in the threat landscape.

Even when compared with past P2P botnets, FritzFrog appears unique; it does not use IRC
like IRCflu, it operates in-memory unlike DDG, and runs on Unix-based machines — as
opposed to the InterPlanetary Storm botnet. If any, it bears some resemblance — especially
with regards to function naming and version numbers — to Rakos, a P2P botnet written in
Golang and analyzed by ESET back in 2016.

Detection & Mitigation

Guardicore Labs provides a FritzFrog_detection script to run on SSH servers. It looks for the
following FritzFrog indicators:

* Running processes nginx, ifconfig or libexec whose executable file no longer exists on
the file system (as seen below)
e Listening port 1234

9/10

https://securityboulevard.com/2020/06/ssh-targeting-golang-bots-becoming-the-new-norm/
https://securityboulevard.com/2020/06/ssh-targeting-golang-bots-becoming-the-new-norm/
https://www.welivesecurity.com/2016/12/20/new-linuxrakos-threat-devices-servers-ssh-scan/
https://github.com/guardicore/labs_campaigns/blob/master/FritzFrog/detect_fritzfrog.sh

In addition, TCP traffic over port 5555 can indicate network traffic to the Monero pool.

ubuntu@ip-111-11-11-11:~$% ./detect_fritzfrog.sh
FritzFrog Detection Script by Guardicore Labs

[*] Fileless process nginx is running on the server.
[*] Listening on port 1234
[*] There is evidence of FritzFrog's malicious activity on this machine.

¥ Guardicors Guardienre Labs Gamrdicers CENTRA

Cyber Threat Intelligence _ ;
4 Jum 23 2819 - Jun 38 2819
Top Attackers Yop AtRacked Sereices by Port Top Malcioen Domaim
I
— | L
I . il
— 5 II-\.. 517
— = 1,108
— i e
— 1
- | 11

Learn More About Threat Intelligence Firewall

VIEW NOW

FritzFrog takes advantage of the fact that many network security solutions enforce traffic only
by the port and protocol. To overcome this stealth technique, process-based segmentation
rules can easily prevent such threats.

Weak passwords are the immediate enabler of FritzFrog’s attacks. We recommend choosing
strong passwords and using public key authentication, which is much safer. In addition, it is
crucial to remove FritzFrog’s public key from the authorized keys file, preventing the
attackers from accessing the machine. Routers and loT devices often expose SSH and are
thus vulnerable to FritzFrog; consider changing their SSH port or completely disabling SSH
access to them if the service is not in use.

10/10

https://www.guardicore.com/lp/threat-intelligence-firewall/

