
1/12

August 17, 2020

UPX Anti-Unpacking Techniques in IoT Malware
cujo.com/upx-anti-unpacking-techniques-in-iot-malware/

https://cujo.com/upx-anti-unpacking-techniques-in-iot-malware/

2/12

All posts
August 17, 2020

Attackers are always at the forefront of inventing new techniques to stay covert. It comes by
no surprise that their tradecraft is also subject to continuous improvement and development.
One interesting facet of their tactics is how they are utilizing binary packing. Packing plays an
important part in evasion and covert deploying of malicious binaries:

It helps attackers to avoid endpoint anti-virus detection software when deploying the
malicious binary to the target device

https://cujo.com/blog

3/12

Packing reduces the size of the binary on disk and in transit significantly: this comes
handy, when low visibility is required from the attacker’s side or for instance, an exploit
kit requires small binaries to be delivered, otherwise it would break, and crooks would
not be able to disseminate malicious binaries properly
Packing also enables to hide plain-text strings seen normally in the binary, throttling the
analysis that defenders may do on the binary

A Primer on Packing

There are commonly four packer types that we distinguish, but oftentimes the boundary
between these might be thin. These are:

Compressors: greatly reduces the size of the binary
Cryptors: using cryptographic algorithm to obfuscate the contents of the binary
Protectors: used widely as copyright protection, for ex.: Virtual machine (VM)-based
digital rights and copy protection
Installer: binary wrapped around an installer for easy installment

There are many ways of identifying packed binaries:

Examining visual representation of the binary: to explore similarities by visualizing
certain byte patterns of the binary; other application of it is to spot important
structures in the binary or to analyze given file formats in order to better understand it
Non-standard section names
Section with both Writable and Execute permissions may be a possible sign of a
packer
Address of entry point somewhere else, then in the first section
Presence of certain function calls
Increased entropy: taking the frequency of each byte value that are present in
each block or section, then applying a certain entropy formula to calculate entropy
scores for given sections: higher entropy scores may indicate the presence of
encryption or packing
Very few imports and very few recognizable strings
Using file identification tools (file, trid, etc..)

Unpacking mechanism

A simple routine stub code is embedded into the now packed binary, that also acts as the
entry point. As it starts running, it will allocate a new memory region in which it unpacks the
original code. Then the program code jumps to the Original Entry Point (OEP) and continues
with the execution of the original, unpacked program.

UPX

4/12

One of most known packers is UPX. It is an open-source implementation of an advanced file
compressor, supporting lots of executable types, Linux and Windows too. Over the years,
UPX has been judged both as a legitimate and a gray zone tool, as both innocent and
malicious programs like to use and abuse it commonly.

UPX has been abused in a few different ways for many years:

Use of Vanilla UPX: malware developers just take the original UPX compressor and
apply it to their malware. Easy to unpack, either automatically or manually.
Use of Vanilla UPX, then the packed binary is hex modified: from an attacker
perspective, the goal is to break automatic unpacking by modifying some hex bytes.
This will break the automatic upx –d unpacking method. Some of the most common
modifications include:
Rewriting the UPX! magic headers
ELF magic bytes are modified
Copyright string is modified
Section header names are modified
Extra junk bytes added throughout the binary
Custom UPX: since UPX is open source, anyone can go and look at its source code
on Github and modify certain methods or re-write complete functions. Once
the custom UPX program code is compiled, and then applied to a malicious binary,
there is no way to get a full picture and understand its custom functions or modified
routines right off the bat. Our only resort to understand the mechanism of the
custom packing is to manually reverse engineer it.

UPX Header Structures Abused

Since it was not an easy task to find abused, malicious packed binaries to every plot, we
created skeleton, packed programs, that will raise different error messages on different
abuse scenarios, to try to emulate all exceptions:

p_info corrupted

https://en.wikipedia.org/wiki/UPX

5/12

l_info corrupted

p_info corrupted

In order to understand what each of these corruption means, we need to dig further down
and try to understand how the UPX header builds up after packing. We will find valuable
information in the open source project’s source code, inside linux.h:

https://github.com/upx/upx/blob/d7ba31cab8ce8d95d2c10e88d2ec787ac52005ef/src/stub/src/include/linux.h

6/12

struct b_info // 12-byte header before each compressed block
{

uint32_t sz_unc; // uncompressed_size
uint32_t sz_cpr; // compressed_size
unsigned char b_method; // compression algorithm
unsigned char b_ftid; // filter id
unsigned char b_cto8; // filter parameter
unsigned char b_unused; // unused

};

struct l_info // 12-byte trailer in header for loader (offset 116)
{

uint32_t l_checksum; // checksum
uint32_t l_magic; // UPX! magic [55 50 58 21]
uint16_t l_lsize; // loader size
uint8_t l_version; // version info
uint8_t l_format; // UPX format

};

struct p_info // 12-byte packed program header follows stub loader
{

uint32_t p_progid; // program header id [00 00 00 00]
uint32_t p_filesize; // filesize [same as blocksize]
uint32_t p_blocksize; // blocksize [same as filesize]

};

So, each of these structs store important information for the packer to work properly, so when
the unpacking method is initiated, the target program is uncompressed as intended. If the
corresponding hex values to these structs are altered, we will get the previously seen error
messages.

Rundown

Now that we have an understanding how the fields and structures build up, let’s look at an
example where UPX has been abused in some way or shape. Looking at the following hash:

bc88a57e1203f5eec08d34b59d9de43fa121f9d92cc773c17ebfbe848a2f88cd

7/12

Packed malware UPX header

Packed malware UPX trailer

We need to focus on the underlined hex values. The trained eye will immediately spot
that at 0x98, the UPX! Magic header has been altered with the hex bytes of YTS. That is part
of the l_info structure. If we go further and try to match the bytes with the previously shown
code structure, it is clear that “20 08” is the loader size. 0D is the version info and 0C should
be the UPX format. Right after l_info structure is the p_info structure at 0xA0. From the
source code we know that p_progid should be “00 00 00 00″. After that
comes p_filesize and p_blocksize, both storing the same size value, but in our case, it has
been altered and erased. Fortunately, the value for the filesize and blocksize is also stored
at 0x5C80, which is “58 B2 00 00”. We just need to put this value
into p_filesize and p_blocksize. The values at these 3 offsets should always be the same.
We also see in the trailer section that the string YTS appears twice. We also need to alter
these back to UPX! (55 50 58 21). The trailer section also contains “0D 0C” again, which is
the version and format info from the l_info.

We looked at l_info and p_info, but still have not touched b_info. Actually, there
are two b_info structures in a UPX packed binary, one for the compressed target program
and one for the compressed part of the loader itself.

If we look inside i386-linux.elf-entry.S (ELF x86), we will find that the offset of the first
struct b_info for the compressed program is given in .long O_BINFO. The other b_info for
the compressed part of the loader, is located soon after the instruction call unfold near the
label main:, reached from _start.

Offset of the first struct b_info for the compressed program

https://github.com/upx/upx/blob/master/src/stub/src/i386-linux.elf-entry.S

8/12

We can even debug the whole process and find the exact offsets by uncommenting the
seen int3 instruction and recompiling the UPX binary. Once we debugged a sample file and
found the offsets, we can make note of them and see the corresponding hex values:

Uncomment the int3 instruction to manually debug

The first b_info struct at 0x118

The second b_info struct at 0x559A

The b_method and the b_ftid must be the same for all b_info in the same file. There is a
quick way to gain that information out of a binary, by running upx ––fileinfo on a sample,
packed binary.

UPX fileinfo argument

We have yet to see values for b_info being altered in the wild, but this might be
another abuse surface for UPX packed binaries at later stages. Currently, the most prevalent
UPX abuses are alteration of l_info and p_info.

Let’s summarize our findings of values for the structures in detail:

9/12

Once we put those in, our UPX packed binary now successfully unpacks.

Mozi

Let’s look at another example: Mozi is one of the prevalent IoT malware families in 2020. It is
a perfect example for p_info alteration, as UPX packed Mozi binaries have been observed to
come with 0 value of the p_filesize and p_blocksize fields. This will defeat automatic
unpacking, and in order to get the unpacked binary, we would need to figure out the
correct values of these fields. Employing what we learned previously we quickly find the
corresponding filesize values in the trailer, and we can add that into p_info: “E1 A6 1E 00”

10/12

An example of employing UPX header corruption and erased p_filesize and p_blocksize fields

After fixing the corrupted UPX header and the values of p_filesize and p_blocksize

Manual Unpacking from radare2

Where the automatic unpacking does not work with upx –d tool, even after fixing all the
mentioned discrepancies and modified fields, we may attempt to manually extract the
unpacked executable image from memory, like the following:

Resources:

https://github.com/upx/upx
https://github.com/radareorg/radare2
https://github.com/upx/upx/issues/389

https://github.com/upx/upx
https://github.com/radareorg/radare2
https://github.com/upx/upx/issues/389

11/12

https://github.com/upx/upx/blob/master/src/stub/src/i386-linux.elf-entry.S
https://github.com/upx/upx/blob/master/src/stub/src/amd64-linux.elf-entry.S

Appendix

Appendix A

Appendix B

https://github.com/upx/upx/blob/master/src/stub/src/i386-linux.elf-entry.S
https://github.com/upx/upx/blob/master/src/stub/src/amd64-linux.elf-entry.S

12/12

Appendix C

Used malware hash for analysis:

bc88a57e1203f5eec08d34b59d9de43fa121f9d92cc773c17ebfbe848a2f88cd

Special thanks to @unixfreaxjp for his previous research on ELF packing.

https://twitter.com/unixfreaxjp

