
1/6

August 16, 2020

Manual Unpacking IcedID Write-up
kienmanowar.wordpress.com/2020/08/16/manual-unpacking-icedid-write-up/

Sample hash:

SHA256: 76cd290b236b11bd18d81e75e41682208e4c0a5701ce7834a9e289ea9e06eb7e

Tools:

PE files static analysis: PortExAnalyzer; PE-bear
Debugger & plugin: x64dbg + ScyllaHide Anti-Anti-Debug
Aplib decompress: aplib-ripper

1. Static Analysis

Thow the sample to PortEx Analyzer, tool will analyse file with a special focus on
malformation. We get the results:

The section .text has high entropy, so may be the sample is packed:

https://kienmanowar.wordpress.com/2020/08/16/manual-unpacking-icedid-write-up/
https://github.com/katjahahn/PortEx
https://github.com/hasherezade/pe-bear-releases
https://github.com/x64dbg/x64dbg
https://github.com/x64dbg/ScyllaHide
https://github.com/herrcore/aplib-ripper

2/6

This sample is PE32 with ASLR enabled (can quickly disable this feature by using
setdllcharacteristics):

This sample reveals information about the pdb path:

Some anomalies were identified by PortEx:

https://blog.didierstevens.com/2010/10/17/setdllcharacteristics/

3/6

2. Dynamic Analysis

Load specimen to x64dbg, for unpacking process, we set breakpoints at some common
APIs:

VirtualAlloc

VirtualProtect

CreateProcessInternalW

WriteProcessMemory

After placing the breakpoints like above picture, press F9 to execute. First hit at
VirtualAlloc :

Execute till Return (Ctrl+F9) and Follow in dump the allocated memory (return in EAX
register):

Continue run with F9 , hit the second call to VirtualAlloc and observe changes in the
allocated memory. We see new bytes value was written to this location and it is likely a
shellcode:

4/6

Once again, Ctrl+F9 and Follow in dump the new allocated memory:

Let’s continue execute and hit the third call to VirtualAlloc , some bytes were written to
the new allocated memory. They do not look like shellcode but could be some data that
malicious code uses:

Continuing to execute the call to the VirtuallAlloc function, we have a newly allocated
memory:

5/6

Press F9 , we break at VirtualProtect . The newly allocated device has been filled with
bytes. I spotted a PE file that has been compressed using aPlib because the PE magic bytes
MZ become M8Z .

Follow this section in the Memory Map and dump it to file:

3. Decompress dumped file

From the command line, simply need to pass dumped file to aprip.py . The tool will do its
job and each extracted file will be written to a file “dump0.bin”, “dump1.bin”, …

6/6

Check dump0.bin (21dd005162c62af26f3f59e2ebcb345c) with PE-bear:
AddressOfEntryPoint = 0x0000163D

Valid IATs:

End!

m4n0w4r

