
1/52

Federico Bento July 30, 2020

Dissecting Ragnar Locker: The Case Of EDP
blog.blazeinfosec.com/dissecting-ragnar-locker-the-case-of-edp/

Introduction

On April 13th 2020, news broke out on Portuguese media [1] that Energias de Portugal
(EDP), the Portuguese multinational energy giant and one of the largest European operators
in energy & wind sectors, had been hit by a highly targeted ransomware attack (later
identified as Ragnar Locker [2]), amid COVID-19 pandemic, while the country had been
under state of emergency. The attackers behind the ransomware were, supposedly (although
not confirmed), demanding 1580 BTC (9.9 million EUR) by threatening to leak all of the
stolen data (10TB, according to the perpetrators themselves). It has since been considered
one of its worst cyber attacks.

As such, and as an information security consultancy company based in Porto, Portugal, we
have decided to take initiative in investigating the ransomware sample ourselves by getting
our hands dirty and going right down to its truth. We were specifically interested in
understanding how this ransomware was built, i.e., its technical details, its capabilities and
sophistication. The analysis and its end results are therefore presented in this blog post, in a
detailed fashion, for all the curious readers who wish to know more about the final
(destructive) part of the hack.

Analysis

https://blog.blazeinfosec.com/dissecting-ragnar-locker-the-case-of-edp/

2/52

One of the very first steps an analyst should do when first interacting with a potentially
malicious executable is to perform basic static analysis on the PE, e.g., look at its PE
headers, sections, imports, strings, or any other information that can help him get an overall
general idea of what the binary might do or contain. In this particular case, when looking at
its imports, we can see several windows APIs which are commonly (ab)used by malware in
order to hide their deed. This includes (but not limited to) VirtualAlloc*(), LoadLibrary*() and
GetProcAddress(). Something weird that stood out when looking at the imports is the
existence of several APIs that are only needed for thread synchronization
(InitializeCriticalSectionAndSpinCount(), EnterCriticalSection(), LeaveCriticalSection() and
DeleteCriticalSection()), yet, there are no imported APIs responsible for creating threads in
the first place, e.g., CreateThread().

Hex dumping our target shows several strings, of which some, after looking them up on
google, reveals pages related to malware and malware analysis services.

3/52

Once a more in depth analysis takes place, it becomes quite clear that the ransomware is, in
some way, obfuscated. For example, and for demonstration purposes, the following image
displays a function that is called with the string
"EV_MMAC_OID_TERMINATE_CONNECTION" as argument, where the string is never
actually used for anything and an existing loop is never entered due to the result of the
comparison always leaving EFLAGS.ZF unset (opaque predicate).

4/52

The thread synchronization APIs mentioned earlier also take part of the obfuscation
(essentially junk code), where a loop is concluded after being executed 2000000 times,
performing useless arithmetic operations and calling a function which always returns 0 along
the way.

The interesting parts, from a malware analysis point of view, will only take place once the
ransomware calls VirtualAllocEx() with PAGE_EXECUTE_READWRITE memory
permissions (flProtect). The allocation of pages with such memory permissions is highly
indicative that something interesting will be written into them that will later be treated as code
to be executed, possibly taking part on the unpacking process.

5/52

The following image demonstrates the algorithm being used by the ransomware, where it
starts decompressing/decrypting and writing shellcode into the new memory area.

When it is finished writing the shellcode, it will call GetModuleHandleW(L"kernel32") in order
to obtain the base address of kernel32.dll that is mapped in the current process address
space. It will then transfer control-flow into the new RWX memory area containing the newly
decrypted shellcode, passing the pointer to the retrieved kernel32.dll base address as
argument.

6/52

At this point, execution of the shellcode takes place. The following image demonstrates its
initial instructions.

7/52

As it can be seen from the above image, the shellcode starts by performing a series of MOV
r/m8, imm8 instructions that are being used to construct on the stack, one byte at a time,
strings representing names of Windows APIs. After it is done placing them on the stack, it
will call a subroutine passing, again, the base address of kernel32.dll and the string
"GetProcAddress" as argument.

The following image demonstrates the initial instructions of this subroutine.

For anyone that has done enough malware reversing, or simply to anyone familiar with the
PE file format, it becomes clear that this function is being used to manually iterate through
kernel32.dll's exports in order to dynamically resolve, at runtime, the address of
GetProcAddress() so that it can be subsequently used. The giveaway is the fact that first, it
gets the address of kernel32.dll's PE header by adding kernel32.dll's base address (DOS
Header) with the value stored in the e_lfanew field (at offset 0x3C). Then, it will obtain the
address of the Export Table by adding the Relative Virtual Address (RVA) located in pNtHdr-

8/52

>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress (at
offset 0x78). After GetProcAddress() is resolved, it will then be used to dynamically resolve
the rest of the APIs whose names were constructed previously one byte at a time on the
stack.

Then, VirtualAlloc() is called, but this time the memory access permissions do not include
execution, allowing only reads and writes (PAGE_READWRITE).

Eventually, a relatively long series of operations are performed, resulting in writes to the
newly allocated memory region, where a full PE is decrypted at runtime into it. It is easily
recognizable through the MS-DOS MZ header. This particular point is the best time to dump
the memory region into disk, as the PE is in its unmapped (raw) format, i.e., how it is stored
on disk, versus its mapped (virtual) format, i.e., how it needs to be loaded into memory by
the loader for actual program execution.

9/52

By dumping the PE to disk, it can be further analyzed through the very same basic static
analysis steps in order to get a general idea of what this new binary might have (or do). As
we can see, it contains an interesting .keys section and its Time Date Stamp (compilation
date) is set to Monday, 06.04.2020 19:57:20 UTC. This date is particularly interesting as it's
just a few days prior to the actual initial reports of the attack. Please note, however, that such
date can be easily modified.

Proceeding execution, the SizeOfImage (the size of the image, in bytes, including all
headers) of the newly decrypted PE is then obtained, via pNtHdr-
>OptionalHeader.SizeOfImage, as seen by the use of offset 0x3C to get the address of the
PE header, and then by adding to that result 0x50. The SizeOfImage will be used as the
dwSize argument of the VirtualAlloc() call that follows, with lpAddress being the base
address of the currently running process' binary image and memory access permissions set
to PAGE_EXECUTE_READWRITE.

10/52

After the VirtualAlloc() call, the main binary's image (of the currently running process) is
overwritten with 0's, in a loop that ends after executing SizeOfImage (of the new decrypted
PE) times.

11/52

Then, the new PE's headers are copied into its place, as well as it loads its sections into the
correct locations, not caring about their memory permissions. At this point, we can already
tell that the ransomware performs self process injection.

12/52

By comparing the base address where the new PE was placed against its ImageBase
(preferred base address), via pNtHdr->OptionalHeader.ImageBase (as seen by offset 0x34),
it can decide whether base relocations need to take place or not. In this case, base
relocations do not need to be performed, but there is code inside the shellcode that could do
it in case it was needed.

13/52

The Import Address Table (IAT) is then fixed up by first loading needed DLLs and then
resolving needed imports by the PE. The following image demonstrates this initial process,
as seen by accessing the Import Table, via pNtHdr-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress
(offset 0x80).

14/52

By accessing AddressOfEntryPoint, via pNtHdr->OptionalHeader.AddressOfEntryPoint
(offset 0x28), the Original Entry Point (OEP) is then obtained and subsequently called, thus
transfering execution to the newly unpacked executable, as it is now ready to be executed.

15/52

One of the very first things that is done after execution starts at the new PE's entry point is to
call a subroutine that eventually calls GetLocaleInfoW() with LCID
LOCALE_SYSTEM_DEFAULT (default locale for the operating system), in order to compare
it against a possible set of unicode strings previously constructed on the stack by mov
instructions. The constructed unicode strings are:

Belorussian
Azerbaijani
Ukrainian
Moldavian
Georgian
Armenian
Turkmen
Russian
Kyrgyz
Kazakh
Uzbek
Tajik

If the requested locale information matches any of those strings, as seen by the use of
lstrcmpiW(), then the current process is terminated via TerminateProcess() with exit code
666.

16/52

It then calls GetComputerNameW(), GetUserNameW() and some other function twice with
different arguments, the first time with "SOFTWARE\Microsoft\Cryptography" and
"MachineGuid", while the second time with "SOFTWARE\Microsoft\Windows
NT\CurrentVersion" and "ProductName".

The function simply allocates a page via VirtualAlloc(), opens the provided subkey via
RegOpenKeyExW() from the HKEY_LOCAL_MACHINE (HKLM) registry hive and
KEY_READ access rights, and then retrieves the data for the provided value name
associated with the opened registry key via RegQueryValueExW(). The pointer to the
retrieved data (the page returned from the VirtualAlloc() call) is then the return value of this
function.

For each of the data obtained via the calls to the APIs (GetComputerNameW() and
GetUserNameW()) and the function responsible for retrieving the data associated with the
opened registry keys, it will perform a series of operations on them. Specifically, for each

17/52

character, it will XOR it the value 0xAB01FF3C, add the previous value to the next one,
rotate it left 13 bits and subtract the result of the rotate operation with the value before the
rotate. This is done so that unique IDs result from the operations, where they are later
concatenated.

The result of the previous operations (unique IDs) and their concatenation is so that it will be
used as lpName (the name of the event object) passed to CreateEventW(). But first, it
checks if argc (argument count) is 1, if it's not, CreateEventW() is skipped entirely. However,
if it is 1, a loop is entered where CreateEventW() is called each time and it only breaks out of
it if the return value of the CreateEventW() API call differs from 183
(ERROR_ALREADY_EXISTS). Otherwise, the loop is repeated 32768 times, at which point
the current process is terminated via TerminateProcess() with exit code 666.

18/52

Then, it will enter another loop, executed 17 times, where it tries to open
\\.\PHYSICALDRIVE%d (a physical hard drive) via CreateFileW(), where %d is incremented
for each iteration in the loop, starting from 0. If the return value from CreateFileW() differs
from 0xFFFFFFFF, it will then call DeviceIoControl() on the handle with control code
IOCTL_DISK_SET_DISK_ATTRIBUTES, attempting to bring the disk online and allowing
write operations (Attributes field in SET_DISK_ATTRIBUTES struct is set to 0, and
AttributesMask field set to 0x3). It will also call DeviceIoControl() again, this time with control
code IOCTL_DISK_UPDATE_PROPERTIES, invalidating the cached partition table and
synchronizing the system view of the specified disk device, since at this point it would have
been modified.

19/52

For every existing volume without an associated drive letter, it will then attempt to associate it
an unused drive letter. This is done by scanning and iterating through existing volumes on
the system by making use of the FindFirstVolumeA()/FindNextVolumeA() combination and
determining whether a drive letter is already associated with the volume via
GetVolumePathNamesForVolumeNameA(). If no drive letter has been associated with the
volume, it will then obtain available drive letters via a call to GetLogicalDrives(), where the
first unset bit from the returned bitmask (starting from the 4th) can be used.

At this point, the same routine will be called twice, one after the other, with different
arguments.

20/52

This routine is responsible for generating, via CryptGenRandom(), cryptographically random
bytes of length specified as second argument to the routine, storing it at the address
specified in the first argument. These random bytes are subsequently modified by a relatively
long series of operations.

Another routine will be called, this time called thrice. One of the arguments to the function
that is always passed is a pointer to a suspiciously looking string.

)

21/52

It turns out that this function is responsible for decrypting several data stored in the binary's
.keys section. The first time the routine is called, it decrypts the Tor client chat ID used to
communicate with the perpetrators.

The second time it is called, it is used to decrypt a series of strings, which will later be used
as reference for substrings to look for in order to determine what services to stop, as we will
see. The strings are:

vss
sql
memtas
mepocs
sophos
veeam
backup

22/52

pulseway
logme
logmein
connectwise
splashtop
mysql
Dfs

The third time it is called, it is used to decrypt another series of strings, which will later be
used as reference for substrings to look for in order to determine which processes to
terminate, as we will also see. The strings are:

sql
mysql
veeam
oracle

23/52

ocssd
dbsnmp
synctime
agntsvc
isqlplussvc
xfssvccon
mydesktopservice
ocautoupds
encsvc
firefox
tbirdconfig
mydesktopqos
ocomm
dbeng50
sqbcoreservice
excel
infopath
msaccess
mspub
onenote
outlook
powerpnt
steam
thebat
thunderbird
visio
winword
wordpad
EduLink2SIMS
bengine
benetns
beserver
pvlsvr
beremote
VxLockdownServer
postgres
fdhost
WSSADMIN
wsstracing
OWSTIMER
dfssvc.exe
dfsrs.exe

24/52

swc_service.exe
sophos
SAVAdminService
SavService.exe

After some data has been decrypted, as seen in the previous steps, it will now attempt to
establish a connection to the service control manager (via OpenSCManagerA()) of the local
computer (lpMachineName is set to NULL) and open the SERVICES_ACTIVE_DATABASE
database (lpDatabaseName set to NULL) with the dwDesiredAccess argument set to
SC_MANAGER_ALL_ACCESS. The first call to EnumServicesStatusA() should fail, with the
last-error code set to ERROR_MORE_DATA, as cbBufSize (the size of the buffer pointed to
by the lpServices parameter, in bytes) is set to a small value (36 bytes). If it does fail, then
pcbBytesNeeded will receive the number of bytes needed to return the remaining service
entries (via the second call to EnumServicesStatusA()), where execution can now continue
to the code path that will attempt to stop some services.

25/52

For every enumerated service that contains a substring (StrStrIA()) from the possible set of
strings existing in the previously decrypted data, it will call a subroutine.

26/52

This subroutine is responsible for calling GetTickCount(), opening the existing service via
OpenServiceA() with dwDesiredAccess of SERVICE_STOP | SERVICE_QUERY_STATUS |
SERVICE_ENUMERATE_DEPENDENTS, look up the status of the service via
QueryServiceStatusEx() and:

If its dwCurrentState is SERVICE_STOPPED, it closes the service handle via
CloseServiceHandle() and returns.

If its dwCurrentState is SERVICE_STOP_PENDING, then it will enter a loop where it
sleeps via Sleep() for either 10000 or 1000 milliseconds, calls QueryServiceStatusEx()
again and exists the loop if dwCurrtentStats is SERVICE_STOPPED or if more than
30000 milliseconds have passed (via another call to GetTickCount() and subtracting it
its previous value).

If its dwCurrentState is SERVICE_RUNNING, it will then attempt to enumerate its
dependent services via EnumDependentServicesA(), open the enumerated dependent
services via OpenServiceA() with dwDesiredAccess of SERVICE_STOP |
SERVICE_QUERY_STATUS and call ControlService() on them with dwControl of
SERVICE_CONTROL_STOP. After the enumerated dependent services are stopped, it
will finally call ControlService() on the initial opened service and stop it by using, again,
the dwControl of SERVICE_CONTROL_STOP.

27/52

After the services are dealt with (stopped), it's now time for some process termination. As in
the services case, it loops through all the processes in the system and checks via StrStrIA()
if a substring referred in the previous decrypted data is present in its name. It does this by
first calling CreateToolHelp32Spanshot() with dwFlags TH32CS_SNAPALL (and
th32ProcessID 0), then processes are iterated via the Process32FirstW()/Process32NextW()
combination.

28/52

If the process name contains any substring as indicated by the decrypted data, then the
process is opened via OpenProcess() with dwDesiredAccess of PROCESS_TERMINATE
and terminated via TerminateProcess() with exit code 666.

After process termination, another routine is called. This routine first calls
GetNativeSystemInfo() in order to check the value of
DUMMYUNIONNAME.DUMMYSTRUCTNAME.wProcessorArchitecture stored in the
SYSTEM_INFO struct. If wProcessorArchitecture is
PROCESSOR_ARCHITECTURE_AMD64 (0x9), then LoadLibraryW(L"kernel32.dll") is called

29/52

and the address of Wow64EnableWow64FsRedirection() is obtained via a call to
GetProcAddress(). This WinAPI is then called with Wow64FsEnableRedirection set to
FALSE, thus disabling WOW64 system folder redirection.

When redirection is disabled, two unicode strings are built on the stack by a series of mov
instructions. These unicode strings will be used as lpCommandLine for subsequent calls to
CreateProcessW(). The executed command lines are:

wmic.exe shadowcopy delete

30/52

vssadmin delete shadows /all /quiet

Right after shadow copy deletion, LoadLibraryW(L"kernel32.dll") is called once again and
Wow64EnableWow64FsRedirection() is obtained via GetProcAddress(), this time in order to
be called with Wow64FsEnableRedirection set to TRUE, thus enabling WOW64 system
folder redirection. The routine then returns.

31/52

It is now time for some more data decryption from the .keys section. This time, the data that
is decrypted is a 2048-bit RSA public key. We will see how it will be used later.

32/52

Other data that is decrypted, by another call to the routine, is the final ransom note. Please
refer to the following image.

33/52

The 2048-bit RSA public key is then converted and its public key information imported via
CryptImportPublicKeyInfo() into the provider.

34/52

By calling a subroutine twice that calls CryptEncrypt(), the previous two cryptographically
random data that were generated by both calls to CryptGenRandom(), which were
subsequently modified through a series of operations, will be encrypted with the 2048-bit
public key.

35/52

Via a call to GetComputerNameW(), and through the same series of operations that were
used to generate unique IDs for the CreateEventW() even object name (lpName), an hex
encoded ID is generated.

Through concatenation, by making use of lstrcatW(), and a call to
SHGetSpecialFolderPathW() with csidl CSIDL_COMMON_DOCUMENTS, the path
C:\Users\Public\Documents\RGNR_E354BDB6.txt is built.

36/52

Along the way, a block of heap memory allocated via RtlAllocateHeap() is called with
HEAP_ZERO_MEMORY as Flags, which initializes it with 0's. For some reason, this memory
area will be, again, zeroed out after the call to RtlAllocateHeap().

37/52

The Tor client chat ID previously decrypted is then converted to Base64, by making a call to
CryptBinaryToStringA(), as seen by the use of dwFlags set to CRYPT_STRING_BASE64.

The previously decrypted specifically targeted ransom note that will be left in the attacked
systems is then written via WriteFile() to the
C:\Users\Public\Documents\RGNR_E354BDB6.txt path that had been built moments prior,
by first opening it via CreateFileW() with dwDesiredAccess of GENERIC_READ |
GENERIC_WRITE.

Then, through concatenation, the "RAGNAR SECRET" will be appended to the file, which is
simply the Base64 encoded version of the Tor client chat ID.

38/52

After the file with the ransom note has been written to, the ransomware will check if argc
(argument count) is higher than 1. The ransomware can be executed with "-list" or "-force"
command line options. These are simply used to determine how the paths that will be used
as base to start file encryption are obtained. The command line option "-list" gets the paths
from a file given as argument, while "-force" starts file encryption from the path given as
argument. Since the end goal is file encryption, and these command line options were
probably used solely during development for testing purposes by the attackers, we will
continue examining as if no arguments are given, i.e., argc == 1.

39/52

Through the GetLogicalDrives() API call, a bitmask representing the currently available disk
drives is obtained. For every available disk drive, as indicated by the set bits, its
corresponding drive letter is retrieved by adding 0x41 ('A'). If GetVolumeInformationW()
returns successfully (non-zero) on the volume and its drive type (obtained via a call to
GetDriveTypeW()) differs from DRIVE_CDROM, then it can proceed using it as a base to
start the file encryption process. The currently obtained drive letter is also compared against
the drive letter being used in the WindowsDirectory (e.g., C:\Windows) gotten by the call to
GetWindowsDirectoryW(), and if they match, an integer being treated as a flag will be set to
1, otherwise it'll continue being 0.

40/52

The file containing the ransom note is then copied into this newly obtained path.

After the file is copied, a subroutine will be called with this new path as argument. One of the
other arguments to this subroutine is the integer being treated as a flag to indicate whether
the drive letter of the current path matches the drive letter being used where the
WindowsDirectory is located. This subroutine starts by iterating through all files and
directories existing in the path given as argument, via the FindFirstFileW()/FindNextFileW()

41/52

combination. At first, it only cares about directories and checks if it is not "." or "..". If it's not
any of those directories, then it checks whether the integer flag passed as argument is set or
not. If it is set, i.e., it's the drive letter being used by WindowsDirectory, then further checks
take place.

The checks that take place when the flag passed as argument is set occur so that certain
directories are skipped and nothing will be done on them. The directories that are compared
against the currently obtained directory are:

Windows
Windows.old
Tor Browser
Internet Explorer
Google
Opera
Opera Software
Mozilla
Mozilla Firefox
$Recycle.bin
ProgramData
All Users

42/52

If the obtained directory is not any of those above mentioned directories, then the ransom
note file will be copied into this new directory, and the subroutine will be recursively called
with this new path. The integer being treated as a flag is still passed as set.

When all files/directories have been iterated and went through the checks, i.e.,
FindNextFileW() returns NULL, it will then start iterating again through all files/directories.
The goal, this time, is to look for files specifically. For every file encountered, it compares its
name against a set of possible filenames. These filenames are:

43/52

The ransom note filename
autorun.inf
boot.ini
bootfont.bin
bootsect.bak
bootmgr
bootmgr.efi
bootmgfw.efi
desktop.ini
iconcache.db
ntldr
ntuser.dat
ntuser.dat.log
ntuser.ini
thumbs.db

If the currently found file's name matches any of the above filenames, then nothing is done it
with and it is skipped.

If the currently found file's name does not match the above list of filenames, then extension
checks will also be performed. Specifically, the current file's extension is checked against:

44/52

.db

.sys

.dll

.lnk

.msi

.drv

.exe

If the extension of the current file's name matches any of the above list of extensions, then
nothing is done with it and it is skipped. If it doesn't match, however, the pointer to the file's
name will be added into a stack array.

If 64 files in the current directory under examination have been added into the stack array
(thus passing all of the above checks), then 64 threads will be created via CreateThread().
Each of the 64 pointers in the stack array are passed as lpParameter and the routine that
handles file encryption is passed as lpStartAddress.

45/52

If, at the end of examination of the directory, the number of files in the stack array are less
than 64, then a thread will be created via CreateThread for each of the files. Each of the
pointers in the stack array are passed as lpParameter and the routine that handles file
encryption is also passed as lpStartAddress.

In the thread that handles file encryption, it first reads via ReadFile() the 9 last bytes of the
file. If the marker string _RAGNAR_ is found, then this file will not be encrypted, as it is
already the result of previous encryption, as we will see.

46/52

If the marker is not found, a routine is called which performs a series of operations on both
cryptographycally random bytes resulted from the calls to CryptGenRandom() (although
immediatly later modified by another series of operations). The call to this function is seen
below. The result will later be used in the actual file encryption process.

A teaser on these operations is demonstrated in the following image.

47/52

Then, the actual routine that encrypts the file is called.

The encryption cipher used is based on add-rotate-xor (ARX) operations, appearing to be a
modified version of the Salsa20 stream cipher. The following image demonstrates what very
closely resembles it.

48/52

When file encryption is complete, both cryptographycally random sequence of bytes that
were encrypted by the 2048-bit RSA public key will be appended into the encrypted file. The
file marker _RAGNAR_ is also appended.

49/52

After everything is written into the new file as part of the encryption process, the file will be
moved via MoveFile(), essentially adding it a new extension: .ragnar_E354BDB6

Finally, after everything is complete, the ransomware will end execution by:

Retrieving the SessionID of the console session (the session that is currently attached
to the physical console) via WTSGetActiveConsoleSessionId()
Opening the current process token via OpenProcessToken() with DesiredAccess of
TOKEN_ALL_ACCESS

50/52

Creating a new access token that duplicates it via DuplicateTokenEx with
dwDesiredAccess of TOKEN_ALL_ACCESS and TokenType of TokenPrimary
Setting the console's SessionID on the new duplicated access token via
SetTokenInformation()
Creating a process using the new access token via CreateProcessAsUserW(), starting
notepad.exe with the ransom note file as its argument
Calling ExitProcess(0)

And now for the obligatory ransom note display.

51/52

Conclusion

From the thorough analysis of the Ragnar Locker ransomware that left a specifically targeted
ransom note to Energias de Portugal, a few things can therefore be concluded. First, it is
entirely obvious that no inside or outside world connections are attempted by the
ransomware itself, proving that any stolen files must have had to be stolen and exfiltrated
from their network before ransomware execution by the attackers. The unpacked executable
has a Time Date Stamp (compilation date) of "Monday, 06.04.2020 19:57:20 UTC", which is
7 days earlier than that of actual deployment, possibly hinting that the perpetrators had
access into EDP's networks since at least that specific date.

The ransomware does not ship any anti-debugging or anti-VM techniques, nor does it really
do much in order to thwart or even slow down analysis from unintended prying eyes. Many of
the actions performed by the ransomware would require SYSTEM privileges, even though it
does not contain any UAC "bypassing" capabilities (note the double quotes; UAC is not a
security boundary). However, since it has been manually executed by the attackers who
must have had prior access, such permissions could be easily identified (and possibly
obtained) before deployment. It is the actual definition of ransomware, doing no more and no
less. If the default locale of the systems where the ransomware is run has a specific set of
possible settings, the process immediatly terminates.

In theory, the perpetrators can possess file decryption capabilities, as the cryptographycally
secure data used to then derive the symmetric key and nonce are appended to the newly
encrypted files, in encrypted form, using the 2048-bit RSA public key that is embedded in the

52/52

binary (decrypted at runtime only). The ransomware could have most probably been
detected either via static analysis or at runtime as it were executing due to its heavy use of
seemingly malicious WinAPIs.

We sincerely hope that you have enjoyed our deep dive into the technical side of the final
stages of the attack.

Cheers and until next time,
Blaze Information Security

IOC Hashes (SHA256)

Packed Sample:
 68eb2d2d7866775d6bf106a914281491d23769a9eda88fc078328150b8432bb3

Unpacked Sample:
 1de475e958d7a49ebf4dc342f772781a97ae49c834d9d7235546737150c56a9c

References

[1] - https://observador.pt/2020/04/13/edp-alvo-de-ataque-informatico-que-bloqueou-
sistemas-de-atendimento-aos-clientes/

[2] - https://www.bleepingcomputer.com/news/security/ragnarlocker-ransomware-hits-edp-
energy-giant-asks-for-10m/

https://observador.pt/2020/04/13/edp-alvo-de-ataque-informatico-que-bloqueou-sistemas-de-atendimento-aos-clientes/
https://www.bleepingcomputer.com/news/security/ragnarlocker-ransomware-hits-edp-energy-giant-asks-for-10m/

