
1/6

By Charlie July 13, 2020

Fell Deeds Awake
cofenselabs.com/fell-deeds-awake/

Malicious documents exploiting CVE-2017-11882 continue to be used by malicious actors,
but it has been a few years since I took a deep dive into their mechanics. A quick spelunk
through our dataset produces quite a few, but I wanted an RTF example with minimal RTF
obfuscation and came across this email:

https://cofenselabs.com/fell-deeds-awake/
https://cofense.com/xlsx-phishing-making-comeback/


2/6

Figure 1 – Original Email

So It Begins

Let’s start out with analyzing the RTF document and compare it with past documents. We
know from experience that this vulnerability can be exploited from multiple document types
(RTF, DOCX, XLSX) and has two options for injecting the malicious stream (Equation stream
and OleNativeStream). But this one immediately looks different. Most public tools were
unable to correctly parse the embedded stream (rtfdump, rtfobj, or RTFScan). Although
rtfdump doesn’t parse the equation stream, it does provide a good layout of all embedded
objects and lets us dump the stream suspected of being the equation stream.



3/6

Figure 2 – rtfdump of the embedded object
We see the traditional ClassName (slightly obfuscated), EqUatioN.3, and the required
FormatID of 0x00000002, and random data for the OLEVersion. And instead of seeing an
Embedded Equation object header starting with 0x001c or any bytes reflecting an MTEF
header, such as a MTEF version of 0x03 and product version of 0x03, we only see the FONT
record at the correct offset, 0x0108 at 0x29.

Out of Doubt, Out of Dark

Let’s load this sample into a debugger and see what other tricks have been developed.
Because the equation object relies on COM, we can set a breakpoint when these objects are
created and iterate until EQNEDT32.EXE is launched. Then attach a separate debugger to
the Equation Editor process and set a break point on the vulnerable function, 0x0041160F.
Just as my last analysis, the return address is overwritten with an address of a RET
instruction. Because the font record location follows the return address on the stack, this also
results in execution flow continuing into the first stage shellcode.



4/6

Figure 3 – x32dbg attached to EQNEDT32.EXE
The first stage shellcode is slightly different for this sample, but not unique and already
discussed here. Basically, the shellcode locates the OLE stream on the heap and uses
kernel32.GlobalLock to lock the stream at this memory location. And then jumps to a
statically defined offset with in the OLE stream.

Figure 4 – First stage shellcode
Similar to my previous analysis, the second stage shellcode starts with a decoder stub. The
decoder contains quite a few JMPs to complicate analysis, but it can be boiled down to the
following:

a CALL instruction to load the start of the encoded shellcode on the stack
POP ESI to create a pointer to the encoded shellcode
Initialize the key for the XOR decoder
the key mutates every iteration with IMUL EDI, EDI, 67D6B6F7
each dword is decoded with XOR DWORD PTR DS:[ESI], EDI

https://www.lastline.com/labsblog/evading-static-analyzers-by-solving-the-equation-editor/


5/6

Figure 5 – A

segment of the decoder stub

If This Is to Be Our End

Now that we know the shellcode for these malicious RTF documents hasn’t changed much,
can we use the unicorn engine to dump the final payload without relying on the heavy weight
and manual process of running it within a debugger?

The first step will be extracting the shellcode from the RTF, starting at the last instruction of
the first stage shellcode, JMP EAX. Then modifying this instruction with a relative jump. The
two instructions preceding this one result in 0xD5 and the JMP instruction is at offset 0x33
from the start of the OLE stream. By modifying the JMP EAX to a relative near jump, we will
be adding 3 additional bytes to the instruction. This results in JMP 0x9F. Stripping the
shellcode from the original RTF and modifying the JMP instruction produces the following
hex string:

Figure 6 – Shellcode
I leave it to the reader to review their tutorial and sample scripts for your programming
platform.

One interesting feature of the unicorn engine is how we can add hooks to instructions, code
blocks, and even results of an instruction. We can use these hooks to add a callback function
every time an instruction writes to memory or when an instruction reads from an unmapped
segment of memory. To use the unicorn engine to decode our shellcode we will need to do
the following:

https://www.unicorn-engine.org/
https://www.unicorn-engine.org/docs/tutorial.html
https://github.com/unicorn-engine/unicorn/tree/master/bindings


6/6

Define and map our address space
Define ESP to handle any POP instructions
Define a callback function on memory writes to determine what segment of our
shellcode is being modified
Define a callback function on a memory read from an unmapped segment, this should
indicate our final shellcode attempting to load a function from a module

Figure 7 – Unicorn engine decoding the shellcode
Excellent! Our script was able to decode the final shellcode and can even see the API calls
that are loaded via LoadLibraryW. Because the shellcode is UTF-16BE, we can print the
important IoCs by setting the encoding for the strings command. Our pipeline had already
pulled this sample and labeled it as MassLogger.

IoCs

IoC Type IoC Value

URL hxxp://transgear[.]in/bana/ot1ZIWtPLBLdX65.exe

SHA256 adfd200a16ffe7c04631176e3ad03ded8785c7ecf9581f42915ea199f8c27e9b

https://github.com/CofenseLabs/tools/blob/master/dumper.py

