
1/8

July 12, 2020

Deobfuscating DanaBot’s API Hashing
malwareandstuff.com/deobfuscating-danabots-api-hashing/

Published by hackingump on July 12, 2020

You probably already guessed it from the title’s name, API Hashing is used to obfuscate a
binary in order to hide API names from static analysis tools, hindering a reverse engineer to
understand the malware’s functionality.

 A first approach to get an idea of an executable’s functionalities is to more or less dive
through the functions and look out for API calls. If, for example a CreateFileW function is
called in a specific subroutine, it probably means that cross references or the routine itself
implement some file handling functionalities. This won’t be possible if API Hashing is used.

Instead of calling the function directly, each API call has a corresponding checksum/hash. A
hardcoded hash value might be retrieved and for each library function a checksum is
computed. If the computed value matches the hash value we compare it against, we found
our target.

https://malwareandstuff.com/deobfuscating-danabots-api-hashing/
https://malwareandstuff.com/author/klopsch/

2/8

API Hashing used by DanaBot
In this case a reverse engineer needs to choose a different path to analyse the binary or
deobfuscate it. This blog article will cover how the DanaBot banking trojan implements API
Hashing and possibly the easiest way on how this can be defeated. The SHA256 of the
binary I am dissecting here is added at the end of this blog post.

Deep diving into DanaBot

DanaBot itself is a banking trojan and has been around since atleast 2018 and was first
discovered by ESET[1]. It is worth mentioning that it implements most of its functionalities in
plugins, which are downloaded from the C2 server. I will focus on deobfuscating API Hashing
in the first stage of DanaBot, a DLL which is dropped and persisted on the system, used to
download further plugins.

https://www.welivesecurity.com/2019/02/07/danabot-updated-new-cc-communication/

3/8

Reversing the ResolvFuncHash routine

At the beginning of the function, the EAX register stores a pointer to the DOS header of the
Dynamic Linked Library which, contains the function the binary wants to call. The
corresponding hash of the yet unknown API function is stored in the EDX register. The
routine also contains a pile of junk instructions, obfuscating the actual use case for this
function.

The hash is computed solely from the function name, so the first step is to get a pointer to all
function names of the target library. Each DLL contains a table with all exported functions,
which are loaded into memory. This Export Directory is always the first entry in the Data
Directory array. The PE file format and its headers contain enough information to reach this
mentioned directory by parsing header structures:

Cycling through the PE headers to obtain the ExportDirectory and AddressOfNames
In the picture below, you can see an example of the mentioned junk instructions, as well as
the critical block, which compares the computed hash with the checksum of the function we
want to call. The routine iterates through all function names in the Export Directory and
calculates the hash.

 The loop breaks once the computed hash matches the value that is stored in the EDX
register since the beginning of this routine.

4/8

Graph overview of obfuscated API Hashing function

Reversing the hashing algorithm

The hashing algorithm is fairly simple and nothing too complicated. Junk instructions and
opaque predicates complicate the process of reversing this routine.

The algorithm takes the nth and the stringLength-n-1th char of the function name and
stores them, as well as capitalised versions into memory, resulting in a total of 4 characters.
Each one of those characters is XOR'd with the string length. Finally they are multiplied and
the values are added up each time the loop is run and result in the hash value.

5/8

def get_hash(funcname):
 """Calculate the hash value for function name. Return hash value as integer"""
 strlen = len(funcname)
 # if the length is even, we encounter a different behaviour
 i = 0
 hashv = 0x0
 while i < strlen:
 if i == (strlen - 1):
 ch1 = funcname[0]
 else:
 ch1 = funcname[strlen - 2 - i]
 # init first character and capitalize it
 ch = funcname[i]
 uc_ch = ch.capitalize()
 # Capitalize the second character
 uc_ch1 = ch1.capitalize()
 # Calculate all XOR values
 xor_ch = ord(ch) ^ strlen
 xor_uc_ch = ord(uc_ch) ^ strlen
 xor_ch1 = ord(ch1) ^ strlen
 xor_uc_ch1 = ord(uc_ch1) ^ strlen
 # do the multiplication and XOR again with upper case character1
 hashv += ((xor_ch * xor_ch1) * xor_uc_ch)
 hashv = hashv ^ xor_uc_ch1
 i += 1
 return hashv

A python script for calculating the hash for a given function name is also uploaded on my
github page[2] and free for everyone to use. I’ve also uploaded a text file with hashes for
exported functions of commonly used DLLs.

Deobfuscation by Commenting

So now that we cracked the algorithm, we want to update our disassembly to know which
hash value represents which function. As I’ve already mentioned, we want to focus on
simplicity. The easiest way is to compute hash values for exported functions of commonly
used DLLs and write them into a file.

https://github.com/hackingump/malwareStuff

6/8

Generated hashes
With this file, we can write an IdaPython script to comment the library function name next
to the Api Hashing call. Luckily the Api Hashing function is always called with the same
pattern:

Move the wanted hash value into the EDX register
Move a DWORD into EAX register

First we retrieve all XRefs of the Api Hashing function. Each XRef will contain an address
where the Api Hashing function is called at, which means that in atleast the 5 previous
instructions, we will find the mentioned pattern. So we will fetch the previous instruction until
we extract the wanted hash value, which is being pushed into EDX . Finally we can use this
immediate to extract the corresponding api function from the hash values we have generated
before and comment the function name next to the Xref address.

7/8

def add_comment(addr, hashv, api_table):
 """Write a comment at addr with the matching api function.Return True if a
corresponding api hash was found."""
 # remove the "h" at the end of the string
 hashv = hex(int(hashv[:-1], 16))
 keys = api_table.keys()
 if hashv in keys:
 apifunc = api_table[hashv]
 print "Found ApiFunction = %s. Adding comment." % (apifunc,)
 idc.MakeComm(addr, apifunc)
 comment_added = True
 else:
 print "Api function for hash = %s not found" % (hashv,)
 comment_added = False
 return comment_added

def main():
 """Main"""
 f = open(
 "C:\\Users\\luffy\\Desktop\\Danabot\\05-07-
2020\\Utils\\danabot_hash_table.txt", "r")
 lines = f.readlines()
 f.close()
 api_table = get_api_table(lines)
 i = 0
 ii = 0
 for xref in idautils.XrefsTo(0x2f2858):
 i += 1
 currentaddr = xref.frm
 addr_minus = currentaddr - 0x10
 while currentaddr >= addr_minus:
 currentaddr = PrevHead(currentaddr)
 is_mov = GetMnem(currentaddr) == "mov"
 if is_mov:
 dst_is_edx = GetOpnd(currentaddr, 0) == "edx"
 # needs to be edx register to match pattern
 if dst_is_edx:
 src = GetOpnd(currentaddr, 1)
 # immediate always ends with 'h' in IDA
 if src.endswith("h"):
 add_comment(xref.frm, src, api_table)
 ii += 1
 print "Total xrefs found %d" % (i,)
 print "Total api hash functions deobfuscated %d" % (ii,)

if __name__ == '__main__':
 main()

Conclusion

8/8

As reverse engineers, we will probably continue to encounter Api Hashing in various different
ways. I hope I was able to show you some quick & dirty method or give you at least some
fundament on how to beat this obfuscation technique. I also hope that, the next time a blue
team fellow has to analyse DanaBot, this article might become handy to him and saves him
some time reverse engineering this banking trojan.

IoCs

Dropper =
e444e98ee06dc0e26cae8aa57a0cddab7b050db22d3002bd2b0da47d4fd5d78c

DLL = cde01a2eeb558545c57d5c71c75e9a3b70d71ea6bbeda790a0b871fcb1b76f49

