
1/12

Threat Bulletin: Dissecting GuLoader’s Evasion
Techniques

vmray.com/cyber-security-blog/guloader-evasion-techniques-threat-bulletin/

Editor’s Note: This blog post was updated on August 10, 2020.

Over the last couple of months, we observed a new downloader called GuLoader (also
known as CloudEyE) that has been actively distributed in 2020. In contrast to prototypical
downloaders, GuLoader is known to use popular cloud services such as Google Drive,
OneDrive and Dropbox to host its encrypted payloads. So far we have seen that GuLoader is
being used to deliver Formbook, NanoCore, LokiBot and Remcos among others. We’ve
observed that GuLoader uses a combination of evasion techniques that evade sandboxes
and slow down (manual) analysis.

On June 6th, 2020 the developers of GuLoader informed the public that they have shut down
their service (Figure 1). Despite the suspension of service, we anticipate other malware
families will evolve and adapt some of these techniques in the near future. In this post, we
will highlight GuLoader’s techniques with a focus on sandbox evasion and anti-analysis.

View the VMRay Analyzer Report for GuLoader

https://www.vmray.com/cyber-security-blog/guloader-evasion-techniques-threat-bulletin/
https://research.checkpoint.com/2020/guloader-cloudeye/
https://www.vmray.com/analyses/evasive-guloader-cloudeye/report/overview.html


2/12

Figure 1: Shut down announcement claiming that the service has been misused by criminals.

Overview and Shellcode

In our analysis, we can see that GuLoader creates another instance (in the following
referenced as the second instance) of itself and modifies its execution (Figure 2 and Figure
3).

Figure 2: VMRay Analyzer – Process overview of the GuLoader sample.

Figure 3: VMRay Analyzer – Process injection into the second instance.

The second instance then performs further malicious activities, which includes network
activity to download the payload and the memory modification of other processes (Figure 4).

Other reports about GuLoader revealed the main functionality is implemented as shellcode,
whereby the sample is a 32-bit executable written in VB6 that contains the shellcode in
encrypted form.

https://www.vmray.com/wp-content/uploads/2021/05/figure-1-4.png
https://www.vmray.com/wp-content/uploads/2021/05/Figure-2-5.png
https://www.vmray.com/wp-content/uploads/2021/05/Figure-3-4.png
https://blog.vincss.net/2020/05/re014-guloader-antivm-techniques.html


3/12

During execution, the embedded shellcode is decrypted, executed and even injected as seen
before (Figure 2).

Figure 4: VMRay Analyzer – Behavior Information showing the first instance with a host
activity of 179 and the second instance with a host activity of 2564 and network activity.

By loading the shellcode in IDA Pro (we loaded the shellcode at offset 0x001A0000) or a
similar disassembler, we can see that the code is heavily obfuscated. The code is split into
smaller code parts containing additional junk code (Figure 6) that are connected with control-
flow changing instructions such as call, return and (indirect) jump. In contrast to compiler-
generated code, the shellcode combines code instructions and data such as strings, which is
typical for position-independent code.

This makes the static control-flow analysis more difficult and causes the automatic analysis
of IDA Pro to fail.

For example, the addresses of library names are pushed on the stack by using the call
instruction (Figure 5). In compiler-generated code, this instruction is used to transfer the
control flow to another function, and the return instruction transfers it back to the caller.

Figure 5: Call instructions that push the addresses of the strings “ntdll, “advapi32” and
“user32” on the stack.

https://www.vmray.com/wp-content/uploads/2021/05/Figure-4-5.png
https://www.vmray.com/wp-content/uploads/2021/05/Figure-5-5.png


4/12

GuLoader resolves the required functions during runtime and uses the hash algorithm djb2 to
find the desired functions.

Anti-Analysis and Evasion Techniques

Expanding on the techniques mentioned above, the shellcode contains more techniques
to obstruct automatic analysis. One of these techniques is the search for virtual machine
artifacts, which are embedded as djb2 hash values. In Figure 6, we can see that these hash
values are pushed on top of the stack and the successive call to the function tries to find the
corresponding artifacts in memory.

Figure 6: Hash values of virtual machine artifacts pushed on the stack.

Since these values are calculated by a one-way function (djb2), their preimages are
unknown. So far, the strings in Table 1 have been found to be possible preimages.

Hash Preimages Notes

7F21185B “HookLibraryx86.dll” ScyllaHide Plugin for x64dbg

A7C53F01 “VBoxTrayToolWndClass” VirtualBox Guest Additions

B314751D “vmtoolsdControlWndClass” VMWare, see [1]

https://www.vmray.com/wp-content/uploads/2021/05/Figure-6-3.png
https://malpedia.caad.fkie.fraunhofer.de/details/win.cloudeye


5/12

If one of these hashes is found in memory, the sample displays an error message (Figure 7)
and terminates the process. Therefore, the sample shows no further malicious behavior, and
it does not download the payload.

Figure 7: Message displayed to the user if a virtual environment was detected.

In addition to the virtual machine artifacts, GuLoader verifies the number of top-level
Windows displayed on the current screen to exclude running in a sandbox (Figure 8.).

For each top-level Window, the callback function (Figure 9) increases a counter by one,
which leads to the overall number of top-level Windows. This counter is used in the check at
0x1A01A6 that validates if at least 12 top-level Windows are present.

Figure 8: Verification of the number of top-level windows on the screen.

Figure 9: Callback function that counts the top-level windows.

If the number is lower, the process terminates in which case no error message is displayed.

To further prevent the manual analysis with a debugger, GuLoader modifies functions related
to debugging (Figure 10).

https://www.vmray.com/wp-content/uploads/2021/05/Figure-7-3.png
https://www.vmray.com/wp-content/uploads/2021/05/Figure-8-3.png
https://www.vmray.com/wp-content/uploads/2021/05/Figure-9-1.png


6/12

GuLoader modifies the two functions DbgBreakPoint and DbgUiRemoteBreakin. For the first
function, the first byte is replaced by a NOP instruction, and for the second function, the code
is replaced by a call to ExitProcess (Figure 11).

Figure 10: VMRay Analyzer – Code modifications of the function DbgUiRemoteBreakin

Figure 11: [Left] Before code modification of the function DbgUiRemoteBreakin.

[Right] After code modification of the function DbgUiRemoteBreakin.

After the code modifications of DbgUiRemoteBreakin, the attaching of a debugger to the
running process results in its termination.

In addition to the modifications of the two functions mentioned above, GuLoader modifies
further functions exported by Ntdll.dll (Figure 12). These functions are well-known candidates
for function hooking which allows intercepting function calls by redirecting the control flow.
Some Antivirus Software and Sandboxes use function hooking to monitor the behavior of a
given program.

https://www.vmray.com/wp-content/uploads/2021/05/Figure-10.png
https://www.vmray.com/wp-content/uploads/2021/05/DbgUiRemoteBreakin-GuLoader.png


7/12

Figure 12: VMRay Analyzer – Hook Information about modifications of Ntdll.dll functions.

Verifying this suspicion in IDA Pro, GuLoader iterates through the code section of Ntdll.dll.
While iterating GuLoader tries to undo modifications introduced through function hooking as
mentioned in Crowdstrike’s analysis and disables Turbo Thunks, see WoW64 Internals.

To find candidates for modification, GuLoader uses various byte patterns including “B8 00 00
00 00 BA” (Figure 13).

https://www.vmray.com/wp-content/uploads/2021/05/Figure-13.png
https://www.crowdstrike.com/blog/guloader-malware-analysis/
https://wbenny.github.io/2018/11/04/wow64-internals.html
https://www.vmray.com/wp-content/uploads/2021/05/Figure-14.png


8/12

Figure 13: Part of the decompiled function that modifies Ntdll.dll functions based on byte-
pattern search.

Disabling of Turbo Thunks is reported (Figure 12) and calls to these functions are still
monitored because VMRay Analyzer does not rely on hooking.

Furthermore, GuLoader hides threads by calling the function NtSetInformationThreadwith the
value HideFromDebugger (0x11) for the parameter ThreadInformationClass(Figure 14).

Figure 14: VMRay function log that shows the hiding of threads with NtSetInformationThread
and the ThreadInformationClass HideFromDebugger parameter.

In addition to the previously mentioned hash values of virtual machine artifacts, GuLoader
checks the presence of the Qemu Guest Agent on the filesystem. Both filesystem strings are
visible in the shellcode (Figure 15) and in the function log (Figure 14).

Figure 15: Strings related to the Qemu Guest Agent.

Before the second instance is created, or, in case of the second instance, before the payload
is downloaded, it delays its execution by using the instructions cpuid and rdtsc frequently in a
loop (Figure 16).

The instruction cpuid provides information about the processor and available features and
can be used to detect the presence of a hypervisor. In addition, rdtsc provides the number of
CPU cycles since the last reset.

https://www.vmray.com/products/analyzer-malware-sandbox/
https://www.vmray.com/wp-content/uploads/2021/05/figure-15.png
https://www.vmray.com/wp-content/uploads/2021/05/figure-16.png


9/12

Figure 16: Usage of instructions cpuid and rdtsc.

If cpuid is executed in a virtual machine, the instruction causes the control flow to be
transferred to the hypervisor which resolves the request. Switching from the virtual machine
to the hypervisor and back again introduces an overhead that can be used to detect a virtual
machine.

In case that a sandbox patches the rdtsc instruction to return a fixed value, the loop in Figure
16 is an infinite loop since the register edx at 0x001A2506 has always the value 0 and the
subsequent conditional jump is always taken.

Next, the sample performs the actions related to its stage. In the first stage, it creates a new
process of itself, tries to unmap its base image, maps msvbvm60.dll instead, followed by the
previously mentioned code injection.

In the second stage, it downloads the payload using WinINet’s functions InternetOpenURLA
and InternetReadFile. We inspected the behavior of both stages in the VMRay function log
(Figure 17). We highlighted the fuction calls to NtGetContextThread in both figure because
calls to some specific functions including CreateProcessInternalW,
NTAllocateVirtualMemory, NTWriteVirtualMemory and NTResumeThread are preceded by a
call to NtGetContextThreat.

https://www.vmray.com/wp-content/uploads/2021/05/figure-17-1.png


10/12

Figure 17: [Left] VMRay function log that shows function calls with preceded debug checks to
prepare the second instance.

 [Right] VMRay function log that shows function calls with debug checks to download the
payload from 5[.]206[.]227[.]100].

These functions are well-known candidates for breakpoints during manual dynamic analysis,
and GuLoader tries to detect the presence of these breakpoints (Figure 18). After a call to
NtGetContextThread, the values of the debug registers DR0, DR1, DR3, DR6, DR7 are
investigated to detect hardware breakpoints (see the structure CONTEXT). Next, the code of
the desired function is checked against interrupts/software breakpoints (0xCC, 0x3CD,
0x0B0F), which are typically set by debuggers, before the function is finally called (offset
0x1A2E66).

Figure 18: Detection of hardware and software breakpoints before the dynamic function call.

After all of these evasion and anti-analysis attempts, the second instance decrypts the
received payload, maps it into memory, and transfers execution.

https://www.vmray.com/wp-content/uploads/2021/05/NtGetContextThread-GuLoader.png
https://www.pinvoke.net/default.aspx/kernel32/GetThreadContext.html
https://www.vmray.com/wp-content/uploads/2021/05/figure-20.png


11/12

Conclusion

With the help of VMRay Analyzer, we can observe the complete behavior GuLoader, which
automates and accelerates the identification of important behavior for further analysis
(Figures 19 & 20). This analysis is a good example of how malware evolves and adapts very
technical sandbox evasion and anti-analysis techniques. The quick and widespread adoption
of GuLoader confirms a growing demand for evasive malware loaders in the criminal
underground.

Figure 19: VMRay Analyzer – Network behavior that downloads the encrypted payload from
5[.]206[.]227[.]100.

https://www.vmray.com/wp-content/uploads/2021/05/image2020-6-15_14-42-34-1.png
https://www.vmray.com/wp-content/uploads/2021/05/image2020-6-15_14-38-8-1.png


12/12

Figure 20: VMRay Analyzer – Memory dumps including the injected shellcode and the
mapped decrypted payload.

References

https://malpedia.caad.fkie.fraunhofer.de/details/win.cloudeye

https://research.checkpoint.com/2020/guloader-cloudeye/

https://www.crowdstrike.com/blog/guloader-malware-analysis/

https://blog.vincss.net/2020/05/re014-guloader-antivm-techniques.html

https://wbenny.github.io/2018/11/04/wow64-internals.html

IOCs

Sample

b240e52ea8a55a50760de6017d644d2d0fcc43fd8918abdf99964efb464c37b6

Server

5[.]206[.]227[.]100

Encrypted Payload

5399f144876e276e8ee1ea206bb4599ca912d8ff42327bdbf08f588a0a836b4e

https://malpedia.caad.fkie.fraunhofer.de/details/win.cloudeye
https://research.checkpoint.com/2020/guloader-cloudeye/
https://www.crowdstrike.com/blog/guloader-malware-analysis/
https://blog.vincss.net/2020/05/re014-guloader-antivm-techniques.html
https://wbenny.github.io/2018/11/04/wow64-internals.html

