
1/18

Palantir July 8, 2020

Restricting SMB-based lateral movement in a Windows
environment

medium.com/palantir/restricting-smb-based-lateral-movement-in-a-windows-environment-ed033b888721

Pal
antir
Palantir
Follow
Jul 8, 2020

·

19 min read

When Palantir entered into a technical collaboration partnership with SpecterOps in 2018, one
of our key initiatives was the advancement of defensive capabilities against the latest Windows
security tradecraft. To that end, the Adversary Simulation team at SpecterOps perform regular
red team engagements inside the various Palantir networks and leverage their latest tools and
techniques to provide a continual feedback loop for defensive security improvement.

Lateral movement via Windows Server Message Block (SMB) is consistently one of the most
effective techniques used by adversaries. In our engagements with the SpecterOps team, this
mechanism is consistently targeted for abuse.

Even in networks where significant efforts have been made to eliminate unnecessary SMB
exposure, there are usually a small number of servers with a business-critical need to serve
files to legitimate clients. In most organizations, the list will include Domain Controllers (the
SYSVOL share), File Servers, and PowerShell logging servers, at the very least.

This blog post aims to consolidate the defensive information we’ve compiled in our efforts to
restrict SMB-based lateral movement, after many iterations against the SpecterOps Adversary
Simulation Team.

https://medium.com/palantir/restricting-smb-based-lateral-movement-in-a-windows-environment-ed033b888721
https://palantir.medium.com/?source=post_page-----ed033b888721--------------------------------
https://palantir.medium.com/?source=post_page-----ed033b888721--------------------------------
https://medium.com/m/signin?actionUrl=https%3A%2F%2Fmedium.com%2F_%2Fsubscribe%2Fuser%2F1529195d9f13&operation=register&redirect=https%3A%2F%2Fblog.palantir.com%2Frestricting-smb-based-lateral-movement-in-a-windows-environment-ed033b888721&user=Palantir&userId=1529195d9f13&source=post_page-1529195d9f13----ed033b888721---------------------follow_byline-----------
https://medium.com/palantir/palantir-specterops-partnership-288d06f7136d
https://twitter.com/SpecterOps

2/18

Why is SMB-based lateral movement effective?

At a high level, Server Message Block (SMB) is a network communication protocol that can
provide shared access to services on a network. SMB is well-known for file services and for
printers, but it’s much more versatile than that. It can also provide an authenticated inter-
process communication mechanism between nodes.

Ryan Hausknecht (SpecterOps) published an excellent blog that goes into detail on Offensive
Lateral Movement including details about SMB here.

https://posts.specterops.io/offensive-lateral-movement-1744ae62b14f

3/18

For the purpose of this defensive blog post, we can oversimplify Ryan’s post and say that when
an adversary has both:

Network access to the SMB service (TCP port 139 or 445) and
Valid credentials

there’s high probability that they’ll be able to gain code execution on the remote host and
expand their attack surface in the environment.

Bypassing MFA

The risk created by SMB is especially important in mature environments where multi-factor
authentication is required for administrative access to servers.

SMB can provide a convenient MFA bypass for adversaries, handing them a foothold that will
allow for remote code execution without any additional authentication factor. Depending on the
environment, SMB may also provide adversaries the ability to disable security controls
(including MFA) and improve their position in the network.

Example:

In many environments which implement a 3rd party MFA provider, an attacker can
remove the MFA restriction with their SMB-based shell. They achieve this by enabling
‘Restricted Admin Mode’. This seems counterintuitive, but works for many MFA clients
because restricted admin mode changes the supported Windows logon types and takes
the MFA provider out of the picture. The setting is controlled via a single registry key:
“HKLM\System\CurrentControlSet\Control\Lsa\DisableRestrictedAdmin” and setting it to 0
is all that is required in many cases. This single change gives the adversary the option of
single-factor RDP access to machines that would have otherwise been protected with an
MFA prompt.

Summary of Controls

We understand that readers will be operating in networks with various levels of operational
maturity, and not all of the recommendations will be practical for every environment. Use this
summary to skip forward to the sections/steps that are relevant to your situation.

The controls that have been effective for Palantir are as follows:

Implementing a simple three-tiered administration model (Workstations, General Servers,
Authentication Servers)
Denying logon for security principals in the wrong tier
Denying SMB communication between workstations
Denying SMB communication from workstations to servers
Prioritizing Operating System upgrades for ‘high risk’ servers
Deploying Windows Defender Code Integrity rules

https://social.technet.microsoft.com/wiki/contents/articles/32905.remote-desktop-services-enable-restricted-admin-mode.aspx

4/18

Deploying Windows Defender Attack Surface Reduction rules

We also believe it is worth calling out the options that we haven’t yet been able to derive value
from:

Denying network logon for security principals likely to be used for adversary lateral
movement*
Denying ‘log on as a service’ for administrative accounts
Windows Token filtering policies
Improved Service Control Manager ACLs
WMI access restrictions
Advanced Windows Firewall configurations for all SMB traffic — IPSEC (null encryption)**
Network-based tiering restrictions on a per service level
Windows Firewall built in Named Pipe rules

* We begin many of our red team engagements with the assumption that some low-level,
standard user credentials have been stolen from an endpoint and the operator has
remote code execution on that device.

** We make heavy use of Windows Firewall and IPSec with null encryption for other use
cases.

Effective Mitigations

[1]: Implementing a simple tiered administration model (Workstations,
General Servers, Authentication Servers)

As best as we can, we follow Microsoft guidance in our approach to setting up a tiering model
for each of our environments. Microsoft have excellent documentation on the topic, including an
implementation guide here.

We take a simple approach and divide our environments into three asset types:

Tier 0 — Domain Controllers, ADFS servers and others that have direct ability to influence
authentication.
Tier 1 — All other servers
Tier 2 — Workstations

Then, for each of the tier types we restrict the security principals that can log on. Example:

Tier 0 — ‘username-t0’ + require MFA.
Tier 1 — ‘username-t1’ + require MFA.
Tier 2 — standard username and MFA depending on the service and scenario.

We restrict all administrative ports to bastion hosts for each tier.

https://docs.microsoft.com/en-us/windows-server/identity/securing-privileged-access/securing-privileged-access

5/18

Even if an adversary is in possession of stolen administrative credentials (tier 1 or tier 0), the
administrative ports such as RDP and WinRM are not available from lower tier machines.

Administrative ports are only open to traffic from bastion hosts, which are protected with a 3rd
party MFA provider. We achieve this with Windows host-based firewall and back it with network
firewall rules.

Palantir CISO Dane Stuckey’s ‘Endpoint Isolation with Windows Firewall’ post provides
detail for configuring Windows firewall to suit this model.

In a perfect world, this level of separation would mean that even if an adversary stole tier 1 or
tier 0 credentials from a workstation, they would not be able to use them. They’d require MFA to
position themselves on a host with access to administrative ports on their targets. Unfortunately,
this is where SMB steps in and provides options for abuse.

This first foundational step provides the following significant improvements:

Attackers need to be on a bastion host to access administrative ports for servers
Attackers need specific credentials to move between tiers and users do not use those
credentials on workstations.

[2]: Denying logon for security principals in the wrong tier

Users are prevented from logging in to a workstation with a tier 1 (server administration) or 0
(domain administration) accounts.

Without extra effort on the side of the adversary, processes can’t execute in the context of a tier
0 or 1 security principal on lower tier devices.

We use the “Allow log on locally” Group policy for this, linked to the top Organizational Unit for
each service tier. The policy denies logon to the two groups containing principals for each of the
other two tiers.

This simple policy prevents attackers from logging on to our workstations with server
credentials. Interestingly, it also provides protection against remote code execution via SMB if
an adversary was to execute:

runas /user:contoso\bob-t1 ‘psexec.exe \\tier1server.contoso.com cmd.exe’

Unfortunately, there’s a gap in this control as it applies to SMB-based lateral movement. If an
attacker is able to leverage a ‘network only’ logon type, this control will fail. Legitimate tools like
psexec have a ‘/netonly’ parameter, as do adversary frameworks.

The improvements:

Adversaries will meet resistance in leveraging stolen administrative credentials.
Credentials from higher tiers should not be in memory on a lower tier machine.

https://medium.com/@cryps1s/endpoint-isolation-with-the-windows-firewall-462a795f4cfb
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/allow-log-on-locally

6/18

[3] Denying all SMB communication between workstations

We leverage Windows firewall to DENY all inbound SMB communication to workstations.

We don’t provide exceptions to this policy.

We use a simple Windows Firewall rule, distributed via Group Policy and applied to the
workstations OU. The rule denies all inbound communication on ports 139 and 445.

Note: We also recommend that you deny inbound WinRM and RDP to workstations and
don’t allow the machines to use LLMNR, Netbios or mDNS outbound.

The improvement:

Lateral movement with SMB between our workstations is unlikely.
Malware which spreads via SMB is also unlikely to move through our workstation fleet.

[4] Denying most SMB communication from workstations to servers.

We’ve audited the requirements of each of our servers and DENY SMB inbound to any that
have no business need.

This single step reduces the overall risk in a very significant way. SMB-based lateral movement
is now highly unlikely for the majority of our servers, and the remaining machines are
designated as ‘high risk’ and will require additional controls and monitoring. Teams supporting

7/18

‘high risk’ servers accept that additional controls and constraints may apply to servers in this
category.

Servers that require SMB in most Windows environments will be limited to Domain Controllers,
File Servers, logging servers and a small handful of environment specific devices. It’s difficult to
provide accurate numbers, but in our experience a reduction in exposed servers is likely to be
greater than 90%.

The recommended implementation approach is similar to workstations. Link a “DENY SMB”
policy at the Servers OU and use security group based filtering to prevent the small number of
high risk servers from applying the policy.

DENY the “apply group policy” right to the high risk servers group in the security ACL for
the new SMB group policy.

The improvement:

Significant reduction in surface area for SMB-based lateral movement.
Reduction in the number of servers that require a compensating control makes it easier to
tailor a solution to the server type and function.

[5] Prioritize Operating System upgrades for ‘high risk’ servers

SMB-based lateral generally starts by copying a payload to the remote target. The payload is
then executed via one of a handful of techniques: Service Control Manager & WMI are common
examples.

To provide an example:

The Microsoft Sysinternals utility psexec.exe deploys a binary to the Admin$ share on the
remote machine. It then uses the DCE/RPC interface over SMB to access the Windows Service
Control Manager API. That operation starts the PSExec ‘service’ on the remote machine and
creates a named pipe that can be used to send commands to the system.

Many adversary tools also use this approach or substitute WMI in the code execution step.

The summary of access required to make this work is:

TCP Port 139 or 445 open on the remote machine, i.e., SMB.
Write permissions to a network shared folder.
Permissions to create services on the remote machine:
SC_MANAGER_CREATE_SERVICE (Access mask: 0x0002). or permissions to use WMI.
Ability to start the service created: SERVICE_QUERY_STATUS (Access mask: 0x0004) +
SERVICE_START (Access mask: 0x0010) — or permissions to start a process via WMI.

8/18

The challenge for defenders is that even in a well tiered environment, the list above are all
permissions that a tier 1 administrator account would have, and with SMB, the adversary has
an MFA bypass available allowing them to leverage stolen credentials.

The recommendation we’ve adopted is to adjust our corporate security policy to require that
High Risk servers run the latest Windows Operating System.

Windows Server 2019 Defender will provide a significant improvement without configuring any
additional control. This is because Defender is especially effective when a payload touches the
disk. This will usually happen when the default SMB lateral movement approaches are
attempted. Without additional effort on the side of the adversary, payloads from Cobalt Strike,
Empire, and Metasploit are likely to be intercepted when copied to the disk of a Windows
Server 2019 server.

9/18

The improvement:

Default payloads will be destroyed by the Defender service.
Alerting and Detection improvements when Defender eats a malicious payload.
Opportunity to leverage additional modern OS controls in later steps.

Note: the recommendation is not to rush a 2019 upgrade/replacement for your entire fleet
(although that would be nice). Instead, we’ve identified a subset of servers that still expose
SMB in the previous step and classified them as ‘high risk’ — they’re the urgent ones.

[6] Windows Defender Code Integrity rules

Windows Defender Code Integrity policies provide modern application whitelisting that works
especially well when the role of a server is static and well understood. We combine this
recommendation with the advice to deny SMB outright to most servers. Code Integrity is the
primary compensating control for the small number of servers that have a business need to
expose SMB to clients: our ‘high risk servers’.

10/18

Windows Device Guard Code Integrity provides an ‘Audit Mode’, allowing administrators to
deploy the technology for a period of time, then review the logs, adjust the policy, and repeat
until a block operation is a high-fidelity event. Even without ever moving to the blocking phase,
this provides a lot of value for the detection team.

Matt Graeber’s post is the go to for those wishing to use code integrity in their detection
strategy: https://posts.specterops.io/threat-detection-using-windows-defender-application-
control-device-guard-in-audit-mode-602b48cd1c11

Carefully implemented, code integrity policies provide an excellent compensating control for our
servers that still require SMB to be exposed to clients. We’ve been fortunate enough to work
directly with Matt Graeber and recommend his blog for detail. Our tips:

Make heavy use of audit mode before attempting anything in blocking mode. You can
iterate on audit mode policies until you no longer log any events (because you’ve added
everything you need to the whitelist) and then leave the policy in place for a period of time
to be sure.
Start out with a specific server or service type you’d like to protect and perfect the process
before attempting anything at scale. Domain Controllers are a reasonable choice because
they have a single, well-understood role and shouldn’t have much 3rd party software
churn.

The improvement:

Attackers are unable to run arbitrary code on high risk servers.
Very strong control (but requires configuration time investment).

[7] Attack Surface Reduction rules

If you’re operating in a blue team environment and haven’t come across Attack Surface
Reduction rules, Microsoft has a treat for you.

ASR rules are simple to deploy and incredibly effective, although not all the rules will be
applicable for all environments. The majority of them offer audit mode to improve your ADS
coverage, even if there is no desire to use block more.

ASR rules are generally targeted more towards workstations than servers but there is still
significant, low effort value available for defenders.

The current ASR rules are:

Block executable content from email client and webmail
Block all Office applications from creating child processes
Block Office applications from creating executable content
Block Office applications from injecting code into other processes
Block JavaScript or VBScript from launching downloaded executable content

https://posts.specterops.io/threat-detection-using-windows-defender-application-control-device-guard-in-audit-mode-602b48cd1c11
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-atp/attack-surface-reduction

11/18

Block execution of potentially obfuscated scripts
Block Win32 API calls from Office macros
Use advanced protection against ransomware
Block credential stealing from the Windows local security authority subsystem (lsass.exe)

Block untrusted and unsigned processes that run from USB
Block Office communication application from creating child processes
Block Adobe Reader from creating child processes
Block persistence through WMI event subscription

The bolded one, “Block process creations originating from PSExec and WMI commands,” is
especially interesting for some environments:

“This rule blocks processes created through PsExec and WMI from running. Both PsExec
and WMI can remotely execute code, so there is a risk of malware abusing this
functionality for command and control purposes, or to spread an infection throughout an
organization’s network.”

That’s a built-in control that will stop the PSExec-style lateral movement and provide excellent
coverage against some of the other approaches that use WMI to trigger the code execution.

You can deploy ASR rules with group policy, and remember that even if you don’t want to block
on these, you can put them in audit mode and use the events in your ADS’s.

Note: The PSExec/WMI ASR kills SCCM and Intune. If your high risk servers are
managed by those, you’ll have to consider the trade-off. In either case, you can leverage
audit mode.

The improvement:

OS-level protection against common SMB-based lateral movement.

[ALL] Combining the recommendations

Combining the recommendations above, we arrive at a baseline where:

Credentials are restricted by tier, and stolen credentials from one tier provide limited value
to an attacker who is seeking to improve their position in the network (MFA and Bastions
are required).
Very few servers in the environment allow network connectivity to the SMB service (port
139/445).
The remaining servers are categorized as ‘high risk’ and have strong and simple-to-
manage protection via Defender.
‘High risk’ servers leverage built-in lateral movement controls via attack surface reduction.
‘High risk’ servers prevent arbitrary code execution via code integrity policies.

https://docs.microsoft.com/sysinternals/downloads/psexec
https://docs.microsoft.com/windows/win32/wmisdk/about-wmi

12/18

Mitigations that didn’t pan out for us

The following options were discussed and/or tested as potential improvements to our strategy.
They either didn’t work, or had significant downside.

Our reasons for each are discussed below:

[1] Deny network logon type for tiering violations

In mitigation [2] we recommended that teams configure “allow log on locally” in a way where tier
restrictions are enforced by group policy.

We provided an example: ‘runas /user:contoso\bob-t1 ‘psexec.exe
\\tier1server.contoso.com cmd.exe’ where ‘bob-t1’ represents a stolen server administration
account trying to execute psexec from a workstation, targeting SMB-based lateral movement to
a server.

The control we’ve applied works with psexec defaults but as we mentioned, the workaround
(build into adversary tools) is to force a ‘network only’ logon type.

There is a policy that says “Access this computer from the network” — more detail here. It’s
defined down in: Computer Configuration\Windows Settings\Security Settings\Local
Policies\User Rights Assignment which sounds like it might provide value against network only-
type logons.

It was suggested that maybe we could prevent our admins from doing the network only-style
logon, while still allowing them standard logon.

Unfortunately, this option is not appropriate here. If you applied this setting to your servers then
legitimate server admins will not be able to log on.

Cross it off the list.

Note: You could still use this policy as an extra control to stop tier violations. You just can’t
use it to get additional granular control over legitimate users.

[2] Deny ‘log on as a service’ for administrative accounts

This consideration was based on one of the main approaches for SMB lateral movement:
leveraging the service control manager to execute a payload.

It stands to reason that if we could somehow restrict server admins from interacting with the
service control manager except via some break glass process, we could kill off this particular
code execution approach.

The group policy is documented here. It’s set here: Computer Configuration\Windows
Settings\Security Settings\Local Policies\User Rights Assignment.

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/access-this-computer-from-the-network
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/deny-log-on-as-a-service

13/18

We didn’t have success with this setting in our testing.

Microsoft also advise against it: “We recommend that you not assign the Deny log on as a
service user right to any accounts. This is the default configuration.”

[3] Token filtering policies

There’s a security configuration setting called “LocalAccountTokenFilterPolicy” that may provide
some protection against lateral movement via local administrative accounts with the same
password. However, we use LAPS in our environment and work with an assumption that no
devices share local admin passwords. We capture LAPS password change events and have a
good level of confidence in the solution.

Token filtering policies are interesting, though, and Will Schroeder did a great job of discussing
the risks in this blog post.

We wanted to mention token filtering policies here because when discussing lateral movement
they should come up. For this effort though, we are specifically targeting SMB and already have
controls that would restrict pass the hash using local administrative accounts. Token filtering
policies were not part of this specific defensive effort but if you are working through your lateral
movement strategy they are an important consideration.

Token filtering policy STIG is here.

[4] Improved Service Control Manager ACL

We started out with an assumption that the Service Control Manager approach to getting
binaries to run on remote systems was very common in SMB-based lateral movement, but
through iterations with the red team, we realized that more often than not the WMI (over SMB)
approach was preferred. With that in mind, we abandoned this control, but wanted to share our
notes.

The hypothesis was that we could restrict our tier 1 administrative accounts from being able to
create new services, then implement a process to add this ability back for the rare occasions on
which an administrator would actually need to create a new service.

It’s all documented here, but in brief — we can inspect the permissions for a service using:

sc sdshow scmanager

The result is a SDDL string like:

D:(A;;CC;;;AU)(A;;CCLCRPRC;;;IU)(A;;CCLCRPRC;;;SU)(A;;CCLCRPWPRC;;;SY)(A;;KA;;;BA)
(A;;CC;;;AC)S:(AU;FA;KA;;;WD)(AU;OIIOFA;GA;;;WD)

https://www.harmj0y.net/blog/redteaming/pass-the-hash-is-dead-long-live-localaccounttokenfilterpolicy/
https://www.stigviewer.com/stig/windows_server_2008_r2_member_server/2014-04-02/finding/V-36439
https://docs.microsoft.com/en-us/windows/win32/secauthz/security-descriptor-definition-language

14/18

If you’re not familiar with SDDL, it looks horrible, but it’s actually reasonably straightforward to
interpret. What you’re seeing in the output above is both the DACL (security) and the SACL
(auditing). You can break it up by separating on the D: and S: like:

(A;;CC;;;AU)(A;;CCLCRPRC;;;IU)(A;;CCLCRPRC;;;SU)(A;;CCLCRPWPRC;;;SY)(A;;KA;;;BA)
(A;;CC;;;AC)(AU;FA;KA;;;WD)(AU;OIIOFA;GA;;;WD)

We only care about the D: part for our goal.

Then you break up the individual access control entries. They’re separated by brackets so
(A;;CC;;;AU) is an ACE, (A;;CCLCRPRC;;;IU) is an ACE and so on.

Then, each ACE can be interpreted the same way:

ACE type (allow/deny/audit)
ACE flags (inheritance and audit settings)
Permissions (list of incremental permissions)
ObjectType (GUID)
Inherited Object Type (GUID)
Trustee (SID)

So using the first example: (A;;CC;;;AU) breaks out to:

(A;;CC;;;AU)

Allow
.
Create All Child Objects
.
.

If we wanted to build a new ACE for the ACL, we’d construct it in the same way and add it to
the string. You could set the configuration with:

sc sdset scmanager NEW-SDDL-STRING

Our idea was to construct a new SDDL string where our “all-tier1-admins” group didn’t have the
‘create service’ right and then deploy the new ACL to all our servers.

While it wasn’t as complex as it first seemed, and did provide effective control against this
specific type of SMB-based attack, we ultimately opted out because it provided no cover for
SMB-based movement that used a different RPC approach.

[5] Local WMI Access restrictions

15/18

We considered modification to the WMI permissions for each server to restrict process creation
using the common adversary approaches. There are a few ways to make the changes; the
most direct is to use “wmimgmt.msc.” You could make adjustments via the security tab and
potentially export configurations.

After spending a small amount of time here, we abandoned this line of research. We did so for
the same reason we abandoned the service control manager changes. The level of complexity
weighed against the incomplete coverage made it less compelling. We also realized that new
processes would be required for break-glass and that we’d need to be very careful with the
compatibility of applications and services, especially SCCM.

Ultimately, the juice wasn’t worth the squeeze while good alternatives such as Code Integrity
policies existed.

[6] Advanced Windows Firewall configurations for all SMB traffic —
IPSEC (null encryption)

We use this approach a lot already and highly recommend it for other use cases.

The premise is:

16/18

Use Windows firewall to deny access to administrative ports (RDP for example).
Then use some properties of the firewall
DENY usually overrides ALLOW in Windows firewall.
The one exception to that rule is IPSEC.
If you use IPSEC you can override a DENY in a very granular way.
(RDP example) DENY access to RDP for everyone, from everywhere, then configure an
IPSEC policy for those that need RDP access to override that rule.
The IPSEC policy can use Kerberos to further restrict access to specific users and
groups.
We use null encryption. We are leveraging the authentication component of IPSEC, but
no encryption.

The reasons we decided not to take this approach for restricting SMB-based lateral movement:

We’d still like administrators to be able to use SMB from bastion servers (achievable; but
adds complexity).
We can’t configure a blanket DENY rule for SMB then override with IPSEC policy specific
to our administrative accounts. We’d have to apply the override for all normal accounts
that do need SMB access, and block the admins — so it’s kind of the opposite of the
model we are comfortable with.
There’s risk. There’s potential for chicken and egg problems with the domain controllers
and IPSEC, especially when considering GPO application may require SMB. Chances are
the risks could be designed around for safe implementation, but given alternative controls
were available, we decided not to pursue this route.

[7] Network-based tiering restrictions on a per service level

Our network team have the ability to get very granular with network traffic. We have ACEs on
the firewalls that tie into active directory groups, and the team are able to inspect for service
types in addition to traditional port-based restrictions.

We found it difficult to accurately break the problem down in a way that scaled and responded
well to change. With SMB in particular, we are usually dealing with legitimate credentials, and it
is a legitimate service.

We did deny our tier 1 and tier 0 accounts from using SMB from any workstation network, to
any server network. The challenge was the ‘network login’ type that we mentioned earlier in the
psexec notes: if the adversary was able to perform network logon, the traffic appeared to
originate from a non-administrative account and would PASS the ACL.

[8] Windows Firewall built-in Named Pipe rules

When we found this built-in setting, we thought we’d struck gold.

17/18

If we interpreted the rule the way it is written — “Remote Service Management (NP-In)” where
NP is “Named Pipes” — we’d have an amazing level of protection against this problem for very
little effort. (Remember that the majority of lateral movement via SMB works through Named
Pipes).

Unfortunately, there is no special sauce in this rule.

It’s actually a port-based rule (445), with a fancy name describing why 445 might be needed. So
if you switch it to “Block the connection,” you’ll be denying all SMB traffic — which is not our
goal for all servers (and is already implemented on the others).

General SMB Advice

While not directly related to lateral movement, we felt it important to mention two extra points
that are relevant to running SMB services safely:

if at all possible: Ned Pyle provides all the reasons in post.
Test, then for client and server on all devices. Microsoft provide advice .

Wrapping it up

We’ve spent a lot of time thinking about lateral movement. We work with the fundamental
principle that administrative port access to servers is not allowed from our workstations at all,
and that all administrative access should be via a bastion and require MFA.

18/18

For the longest time, SMB has provided a frustrating lateral movement gap in this security
baseline that makes things easier for our adversary simulation team.

It’s a cat and mouse game, but we’re feeling confident that the changes in this post significantly
raise the bar. We hope the lessons learned can be useful to others tasked with protecting their
environments from adversarial lateral movement.

Author

Chad D.

https://twitter.com/duff22b

