Breaking EvilQuest | Reversing A Custom macOS
Ransomware File Encryption Routine

||||| labs.sentinelone.com/breaking-evilquest-reversing-a-custom-macos-ransomware-file-encryption-routine/

Jason Reaves

Sentinel

Breaking EvilQuest

Reversing A Custom macOS Ransomware File
Encryption Routine

By Jason Reaves

READ BLOG

Executive Summary

¢ A new macOS ransomware threat uses a custom file encryption routine
o The routine appears to be partly based on RC2 rather than public key encryption
o SentinelLabs has released a public decryptor for use with “EvilQuest” encrypted files

Background

Researchers recently uncovered a new macOS malware threat[1], initially dubbed ‘EvilQuest’
and later ‘ThiefQuest'[2]. The malware exhibits multiple behaviors, including file encryption,
data exfiltration and keylogging|[3].

Of particular interest from a research perspective is the custom encryption routine. A cursory
inspection of the malware code suggests that it is not related to public key encryption. At
least part of it uses a table normally associated with RC2. The possible usage of RC2 and
time-based seeds for file encryption led me to look deeper at the code, which allowed me to
understand how to break the malware’s encryption routine. As a result, our team created a
decryptor for public use.

1/11

https://labs.sentinelone.com/breaking-evilquest-reversing-a-custom-macos-ransomware-file-encryption-routine/

Uncarving the Encryption Routine

As mentioned in other reports[4], the function responsible for file encryption is labelled

internally as carve_target.

Before encrypting the file, the function checks whether the file is already encrypted by
comparing the last 4 bytes of the file to a hardcoded DWORD value.

If the test fails, then file encryption begins by generating a 128 byte key and calling the
tpcrypt function, which basically ends up calling generate_xkey. This function is the key
expansion portion followed by tp_encrypt, which takes the expanded key and uses it to

encrypt the data.

mow
mow
mowv
mou
call
lea
mow
mov
mow
mow
mow
call
®or
mow
®or
mow
mow
call
cmp
setz
and
mouzx
mow
mow
add
pop
retn

public carve target
_carve_target proc near

var_158= dword ptr -158h
var_14C= dword ptr -14Ch
var_148= quword ptr -148h

Erhh+uar:Ei; a
rdi, [rbp+var 8]

rsi, BFFFFFFFFFFFFFFFCh
edx, 2 : SEEK_END

fseek

rsi, [rbp+var_C]
rcx, [rhp+uvar_8]
rdi, rsi

esi, 1

edx, 4
[rbp+var_18], eax
fread

r8d, r8d

esi, r8d

edx, edx

rdi, [rbptuar_ 8]
[rbp+var_18], rax
fseek

[rbp+var_C], ODDBEBABER

r9b

¥9h, 1

edx, r9b
[rbp+var_1C], eax
eax, edx

rsp, 28h

rbhp

2/11

Ll e =]

lea
mou
mou
mou
mou

lea
mou

add
mov

add
mowv

mou
add
mou
mou
add
mou

jmp

moUZx
call

mousxd

mouvsxd

call

rdi, [rbp+uvar_ 98]
rsi, [rbptuar_ 98]
eax, [rbp+var_D@]
cl, al

edx, 488h

ecx, cl
__generate_xkey
rdi, [rbp+uar_98]
rsi, [rbp+uvar_AA]
¥8, [rbp+uar_CC]
rsi, r8

¥8, [rbp+var_C8]
r?, [rbp+var_ CC]
r8, 9

rdx=, 8
__tp_encrypt

eax, [rbp+var_CC]
eax, 8

[Fbp+var CC], eax
eax, [rbp+var_Da]
eax, 1

[vbp+var DB], eax
loc_188806C43

Following this, the key will then be encoded, using time as a seed. A DWORD value will be

generated and utilized.

mou
mou
mou
mou
mou
call
mou

rdx, [rbp+var_18]
ecx, edx

esi, [rbp+uar_ 28]
edx, [rbp+uvar_ 1C]
edi, ecx
_eip_key I
+9d, BFFFFFFFFh

The encoding routine is simply a ROL-based XOR loop:

s 5

mou
movsxd
®xor
mouv
mou
mou
call
mou
mou
add
mou

jmp

eax, [vrbp+var_2C]
rcx, [rbp+var_78]
rdx, [rbp+var_74]
eax, [rcx+rdx=l]
[Focx+rd==h4], eax
edi, [rbp+var_2C]
esi, 1
_left_rotate
[vbp+uar 2C], eax
eax, [rbp+uvar_74]
eax, 1

[Fhp+var_ 747, eax
loc_1080087408A

3/11

At this point, we can see that something interesting happens, and | am unsure if it is
intentional by the developer or not. The key generated is 128 bytes, as we previously

mentioned.

The calculations then used for encoding the key end up performing the loop 4 extra times,

producing 132 bytes.

public random_ key
_Fandom_key proc near

var_C= dword ptr -8Ch
var_8= quword ptr -8

push rbp
mou rbp, rsp
sub Fsp, 18h
oK eax, eax
mou edi, eax
call sub_18888FFDE
mou ecx, eax
mou edi, ecx
call sub_10880808FFA2
mou edi, 81h
mou esi, 1
call calloc
mow [Fhp+var 8], rax
mov [vbp+var C], @
M
loc 188806F5Y:
cmp [vbp+var_C], 86h
jge loc 100007 04B

i LYUp+rudr_ St ,
mou [rhp+uar_ 48], 4
mou rdi, [rbptvar 8]
call sub_18088FFCA

mov [rhp+var 48], rax
mou rax, [rbp+uvar 48]
mouv rdi, [rbp+uvar 48]
mou [vDp+uvar_ B8], rax
mow rax, rdi

Xor BCX, BCX

mouv edx, ecx

div [rhpruar 48]

moyv rdi, [rbp+var_ 88]
sub rdi, rdx

mouv [rbp+var 58], rdi
mou [vbp+var 58], &
mou rd®, [rhp+uar_ 48]
add rdx, [rhp+uvar_50]
mou [rhp+var_ 68], rdx
mou rdx, [rhp+uvar_G68]
mov rax, rdx

xor BCX. BCX

4/11

This means that the clear text key used for encoding the file encryption key ends up being
appended to the encoded file encryption key. Taking a look at a completely encrypted file
shows that a block of data has been appended to it.

Reversing the File Encryption

Fortunately, we don’t have to reverse that much as the actor has left the decryption function,
uncarve_target, in the code. This function takes two parameters: a file location and a seed

value that will be used to decode the onboard file key.

var_168=
var_164=
var_168=
var_15C=
uvar_158=
var_154=
var_158=
var_14C=
var_148=
var_13C=
var_138=
var_12C=

After checking if the file is an encrypted file by examining the last 4 bytes, the function begins

dword
duword
duword
duvord
duvord
duvord
duvord
duvord
quord
duword
quord
duvord

ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr
ptr

reading a structure of data from the end of the file.

public uncaruve_target
_uncarve_target proc near

-168h
-164h
-168h
-15Ch
-158h
-154h
-158h
-14Ch
-148h
-13Ch
-138h
-12Ch

5/11

mowv [vbp+var_DA], @
mov [vbp+var_DE], @
mouv rdi, [rbptvar_ C8]
mov rsi, BFFFFFFFFFFFFFFF4h
now edx, 2

call fseek

lea rsi, [rbp+var_ DA]
mov rcx, [vbhp+uvar_CH]
mow rdi, rsi

mov esi, 1

mov edx, 8

mov [Fhp+var_128], eax
call fread

mov rdi, [rbp+var DA]
mov [vbp+uar_ 128], rax
call malloc

mov [vbp+var EB], rax
mov rdi, [rbptvar C8]
mov rax, [rbp+var_D@]
add rax, BCh

imul rsi, rax, -1

now edx, 2

call fseek

mov rdi, [rbp+var_EA]
mov rdx, [rbp+var_Da]
mov rcx, [rbp+uvar_CE8]
mov esi, 1

mov [¥bp+var_12C], eax
call fread

mov [rbp+var BB], rax
mov rdi, [rbp+var C8]
mov rax, [vrbp+var_DA]
add rax, 8

imul rsi, rax, -1

mov edx, 1

call fseek

lea vrcx, [rbp+var D8]

Following the code execution, we can statically rebuild a version of what this structure might
look like:

struct data

{

enc blob[size+12]
long long size
int marker

}

struct enc

{

long long val

int val2 // 3rd param to eip_key
long long val3 // 1st param to eip_key
char encoded_blob[4 - val % 4 + val] // for 0x80 this is 132

}

6/11

The encoded file key will then be decrypted and checked using the two values from the
structure and the other seed value passed to uncarve_target. The file key will be decrypted
by eip_decrypt, which is the encrypt-in-place decrypt routine.

P

loc_18888FL47E:

mou rdi, [rbp+uvar EB]
mouv esi, [rbpruar_14]
call _eip_decrypt

mou [vhp+var F8], rax
mou rdi, [rbptuvar_ EB]
call free

mov rdi, [rbp+var F8]
mou esi, 86h

mou al, @

call _theck_key

cmp eax, @

jz loc_10886F4DA

The function eip_key will take the two DWORD values and the seed argument to generate

the XOR key to decode the filekey.

mov
mow
mnow
mow
mow
mow
call

mira

Next, the file is set to the beginning and then a temporary file is opened for writing.

Xxor
mov
®or
mnow
call
mow
mow
call
mnow
mnow
lea
call
mow
cmp
jnz

rcx, [rbp+var_ 18]
r8d, ecx

esi, [rbp+var_C]
edx, [rbp+var_1C]
edi, r8d
[vbp+tuvar_98], rax
_eip _key

o AFFFFFFFrh

LUL_ I HHUMF S4LUH -

eax, eax
esi, eax

edx, edx

rdi, [rbp+var_C8]
fseek

rdi, [rbptvar_18]
[vbp+uvar_158], eax
__make_temp_name
[vbp+var_188], rax
rdi, [rbp+var_188]
¥si, aub g
apen
[vbp+var_1688], rax
[vbp+var_168], @
loc_10880F554

llwhll

7/11

The file is then read into an allocated buffer and the key and encoded file data are passed to

tpdcrypt.

il e =

loc_1808808F572:

mou
mou
mou
mou
call
mov
mou
cmp
jz

rdi, [rbp+var_ 118]
rd®, [rbp+uar_ D8]
rcx, [rhp+var_C8]
esi, 1

fread
[rbp+var_CA], rax
rax, [rbp+uvar CA]
rax, [rbp+uar D8]
loc_ 10888F5B1

il s 5

mou
add
mou
mou
mou
mou
lea
lea
call
mou

As before, we have a key expansion followed this time by a call to tp_decrypt.

loc_1080886F5B1:

rax, [rbp+var_CH]
rax, [rbp+var_Fa]
[rbp+var_FH], raz
rdi, [rbp+var F8]
rsi, [rbp+var_ 118]
rdx, [rbp+uar DH]
rce, [rbp+uar_118]
r8, [rbp+uar_BE]
_tpdcrypt

rdi, [rbptuvar_ 118]

sarlan Faahrm s ss=ea O

8/11

A glance inside the key expansion function shows a reference to a hardcoded table which

h 4

Ll i =1

lea rdi, [rbp+var_98]
mou rsi, [rbp+uar_ 98]
mou eax, [rhp+uvar_DA]
mou cl, al

mowv edx, 488h

mouzx ecx, cl

call __generate_xkey
lea rdi, [rbp+uvar 98]
mov rsi, [rbp+uvar_C8]
mouvsxd 8, [rbp+uvar_CC]
add rsi, r8

mou 8, [rbp+uar_AAd]
movsxd 9, [rbp+var_CC]
add rE, r9

mou rdx, r8

call __tp_decrypt

mou eax, [rbp+uvar_CC]
add eax, 8

mou [rbp+uvar CC], eax
mou eax, [rhp+var_DA]
add eax, 1

mov [rbp+var DA], eax
jmp loc_ 1888856E3A

matches RC2 code that can be found online.

|
ik
H s
o =
i

LB
i
H

THE
H

m=h TR R

1191111

1211

=
b |
|

So now we have enough information to recover the file key:

vl [=l]

[ripg=ear], =i
[rigepar B1d]. rmdl
[repsee_nhi). rul
[g=fe W], Bl
=i _ BN], dl
il , | Fleptrae 130
uliedrs

PO,

II"I-J], ey
ran, |repessr_i1a)
il Wi

Fil, =i _NEETEIR
rilln, 0 EE

I

9/11

import struct
import sys

rol = lambda val, r_bits, max_bits=32:
(val << r_bits%max_bits) & (2**max_bits-1) | ((val & (2**max_bits-1)) >> (max_bits-
(r_bits%max_bits)))

data = open(sys.argv[1l], 'rb').read()

test = data[-4:]

if test != 'xbexbaxbexdd':
print("Unknown version")
sys.exit(-1)

append_length struct.unpack_from('<I', data[-12:])[0]

append_struct = data[-(append_length+12):]
keySize = struct.unpack_from('<I', append_struct)[0]

if keySize !'= 0x80:
print("weird key?")
sys.exit(-1)

encoded_data = append_struct[20:20+132]
xorkey = struct.unpack_from('<I', encoded_data[-4:])[0]

def decode(blob, key):

out = ""

for i in range(len(blob)/4):
temp = struct.unpack_from('<I', blob[i*4:])[0]
temp A= key
key = rol(key, 1)
out += struct.pack('<I', temp)

return out[:0x80]

temp = decode(encoded_data, xorkey)
print(temp)

Attempting to RC2 decrypt the data, however, only seems to work partially at this time using
RC2 routines in both Python and Golang libraries. Further analysis will be needed to verify
what is different.

However, for the purpose of decrypting victim files, we need only take the file key and call the
tp_decrypt function that is located inside the malware itself instead. Dumping the assembly
for this function and building it into a shared object to be executed using the recovered file
key appears to work correctly.

Using this method, SentinelLabs created a public decryptor which is available here (this tool
is released under the MIT software license).

10/11

https://s1.ai/decryptor

Sample

SHA-1: 178b29ba691eea7f366a40771635dd57d8e8f7e8
SHA-256: f409b059205d9a7700d45022dad179f889f18c58c7a284673975271f6af41794

References

1: https://twitter.com/dineshdina04/status/1277668001538433025

2: https://www.bleepingcomputer.com/news/security/thiefquest-ransomware-is-a-file-stealing-
mac-wiper-in-disguise/

3: https://blog.malwarebytes.com/mac/2020/06/new-mac-ransomware-spreading-through-
piracy/

4: https://objective-see.com/blog/blog_0x59.html

11/11

https://twitter.com/dineshdina04/status/1277668001538433025
https://www.bleepingcomputer.com/news/security/thiefquest-ransomware-is-a-file-stealing-mac-wiper-in-disguise/
https://blog.malwarebytes.com/mac/2020/06/new-mac-ransomware-spreading-through-piracy/
https://objective-see.com/blog/blog_0x59.html

