
1/12

June 28, 2020

Interesting tactic by Ratty & Adwind for distribution of
JAR appended to signed MSI – CVE-2020-1464

securityinbits.com/malware-analysis/interesting-tactic-by-ratty-adwind-distribution-of-jar-appended-to-signed-msi/

This article discusses an interesting tactic actively used by different Java RAT malware
authors like Ratty & Adwind to distribute malicious JAR appended to signed MSI files. This
technique was discovered by VT Team in Aug 2018 but that time it was not used by
malware authors to distribute malicious JAR files. Thanks to EKTracker tweet , where I
found this interesting Ratty hashes using this technique.

Our goal is to understand the unique technique instead of analysing the Java RAT.

1/ Interesting technique used by #Ratty sample for distribution of malicious JAR(zip)
appended to MSI

 So when the OS sees jar ext it executes jre to handle the file, but unique about zip files
are read from bottom to top so jar is executed instead of msi file, details below
https://t.co/3u7487kUZy pic.twitter.com/jZw9s07X5z

— Securityinbits (@Securityinbits) June 12, 2020

[9]

[1]

https://www.securityinbits.com/malware-analysis/interesting-tactic-by-ratty-adwind-distribution-of-jar-appended-to-signed-msi/
https://twitter.com/hashtag/Ratty?src=hash&ref_src=twsrc%5Etfw
https://t.co/3u7487kUZy
https://t.co/jZw9s07X5z
https://twitter.com/Securityinbits/status/1271406138588708866?ref_src=twsrc%5Etfw

2/12

CONTENTS

1. Overview of ZIP, JAR & MSI file format

Before we discuss the technique we need to understand some concepts regarding ZIP, JAR
and Windows Installer MSI files. If you already know this, please skip to the next section.

ZIP

PE files are read from top to bottom but ZIP files are read from bottom to top due to their
design. Some more details from Wikipedia

A directory is placed at the end of a ZIP file. This identifies what files are in the ZIP and
identifies where in the ZIP that file is located. This allows ZIP readers to load the list of
files without reading the entire ZIP archive. A ZIP file is correctly identified by the
presence of an end of central directory record(EOCD) which is located at the end of
the archive structure in order to allow the easy appending of new files.

Zip format from Wikipedia

JAR

JAR files follow the zip format. Some more details from Wikipedia

A JAR (Java ARchive) is a package file format typically used to aggregate many Java
class files and associated metadata and resources (text, images, etc.) into one file for
distribution.

 JAR files are archive files that include a Java-specific manifest file. They are built on
the ZIP format and typically have a .jar file extension.

MSI or Windows Installer

[2]

[2]

[3]

https://commons.wikimedia.org/wiki/File:ZIP-64_Internal_Layout.svg

3/12

MSI file follows Compound File/Composite Document File V2 Document/Object Linking and
Embedding (OLE). A compound file is a structure that is used to store a hierarchy of storage
objects and stream objects into a single file or memory buffer. oletools and oledump can be
used to browse the structure of MSI files . We will not go in so much detail of OLE file.

2. How does it work?

Malware author takes two files, one is a clean digital signed MSI file let say with filename
clean_signed.msi and other is malicious JAVA RAT malware filename malicious.jar.

[5]

4/12

Malicious JAR appended to signed MSI

Steps:

1. Malware author select a clean clean_signed.msi MSI file which is digitally code
signed from Microsoft, Google etc. So maybe security control will not not scan the file
due to it’s digital signature. The OS reads the file from top to bottom and see the digital
signature, so everything is good till now.

https://www.securityinbits.com/wp-content/uploads/2020/06/Overview-JAR-appended-to-MSI.png

5/12

2. Other malicious.jar is essentially a zip file which is read from bottom to top as
discussed above.

3. On Microsoft Windows systems, the Java Runtime Environment’s installation program
will register a default association for JAR files so that double-clicking a JAR file on the
desktop will automatically run it.

4. Now, attackers just need to append the jar file to the MSI file and change the extension
to jar.

5. Attackers can use this command copy /b clean_signed.msi + malicious.jar
signed_malicious.jar to generate malicious signed file.

6. When the user executes the signed_malicious.jar , it will execute the malicious jar
file as it’s read from bottom to top.

Why is digital signature still valid?

After the attacker creates the signed_malicious.jar the digital signature is still valid due to the
reason mentioned in the VirusTotal blog post.

Code signing is the method of using a certificate-based digital signature to sign
executables and scripts in order to verify the author’s identity and ensure that the code
has not been changed or corrupted since it was signed by the author. This way, for
example, if you modify the content or append any data to a signed Windows PE (.EXE)
file the signature of the resulting file will not be valid for Microsoft Windows, as
expected. This behaviour changes when you append any data to the end of a signed
Windows Installer (.MSI), the resulting file will pass the verification process of Microsoft
Windows and will show just the original signature as valid without any other warning.

3. Analysis of JAR appended to signed MSI files using Ratty RAT

We will analyse this Ratty 06-01-20.jar (MD5: 13a4072d8d0eba59712bb4ec251e0593)
but the same process is applicable for the Adwind sample.

1. Let’s start with checking the magic byte or file header of this file using file cmd and xxd.
Please feel free to use any other hex viewer.

[10]

https://blog.virustotal.com/2019/01/distribution-of-malicious-jar-appended.html

6/12

MSI header using file and xxd for Ratty

Based on the extension jar this file should have magic bytes for zip but the above figure
shows the standard MSI file header with magic bytes D0 CF 11 E0 A1 B1 1A E1.

grade

Note: This anomaly for extension not matching header is a good indicator to detect this and
other kinds of attack.

2. Now if you check the digital signature using properties it looks ok.

https://www.securityinbits.com/wp-content/uploads/2020/06/MSI-header.png

7/12

Ratty Digital Signature

Sigcheck on Ratty

But using Sigcheck will say “Signed but the filesize is invalid (the file is too large)“. This
is another good detection point.

3. Investigating further using binwalk on this 06-01-20.jar file you will see it matches
different zip signatures starting from offset 0xc600 as shown in the figure below.

https://www.securityinbits.com/wp-content/uploads/2020/06/Digital-Signature.png
https://www.securityinbits.com/wp-content/uploads/2020/06/sigcheck_cropped.png

8/12

binwalk Ratty output

Based on the output, you can easily guess there is a JAR appended to this MSI file.

4. If you dump some bytes at offset using xxd you will see a zip header.
 xxd -s 0xc600 -l 0x100 06-01-20.jar

Hexdump at 0xc600

5. Let’s extract the JAR file from offset 0xc600 then use Bytecode Viewer to analyze the jar
file. I am using dd for this but you can use any hex editor.

https://www.securityinbits.com/wp-content/uploads/2020/06/binwalk.png
https://www.securityinbits.com/wp-content/uploads/2020/06/hexdump-at-offset.png
https://bytecodeviewer.com/

9/12

dd skip=0xc600 if=06-01-20.jar of=extracted_ratty.jar bs=1

If you are new to Java reversing or Bytecode Viewer, you may want to check
this Pyrogenic/Qealler Infostealer static analysis – Part 0x1.

dd cmd for extracting Ratty jar

6. The extracted file is not packed so if you open the extracted_ratty.jar in Bytecode Viewer,
you can see the decompiled Java Code.

Based on the package and folder structure this extracted_ratty.jar is based on this GitHub
Ratty repo. I will not dig any further in this Ratty malware and decompiled Java code can be
easily analysed.

Decompiled Ratty Code & Github repo

4. Timeline

https://bytecodeviewer.com/
https://www.securityinbits.com/malware-analysis/pyrogenic-infostealer-static-analysis-part-0x1/
https://www.securityinbits.com/wp-content/uploads/2020/06/dd-cmd.png
https://github.com/iiizxD3six/Ratty-2.0
https://www.securityinbits.com/wp-content/uploads/2020/06/Ratty-Code-with-github.png

10/12

This technique was discovered by VirusTotal team

VirusTotal posted a blog post about this technique and mentioned that it’s not being used
massively to distribute malware.

There were two other notable blog posts discussing VirusTotal blog.

All three blog posts gives a great explanation of this technique.

Malware author started using this technique for distribution of malicious Java RATs like
Adwind and Ratty.

At last, Microsoft decided to fix this CVE-2020-1464 | Windows Spoofing Vulnerability. I
suspect as malware authors started using this old bug which was discovered in Aug 2018, so
Microsoft decided to fix it.

Aug 2018

This technique was discovered by VirusTotal team

Jan 2019

VirusTotal posted a blog post about this technique and mentioned that it’s not being used
massively to distribute malware.

There were two other notable blog posts discussing VirusTotal blog.

All three blog posts gives a great explanation of this technique.

May-Jun 2020

Malware author started using this technique for distribution of malicious Java RATs like
Adwind and Ratty.

Aug 2020

At last, Microsoft decided to fix this CVE-2020-1464 | Windows Spoofing Vulnerability. I
suspect as malware authors started using this old bug which was discovered in Aug 2018, so
Microsoft decided to fix it.

5. Conclusion

When I saw this interesting technique, I was puzzled.Hopefully, I have explained this
technique detailed enough in this post.

Detection

[9]

[6]

[7] [8]

[9]

[6]

[7] [8]

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1464
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1464

11/12

Anomaly for extension not matching header is a good indicator to detect this technique
and below yara rule can be used.
Check Sigcheck output “Signed but the filesize is invalid (the file is too large)” for
digital signed files
AV may detect this suspicious behaviour of malicious JAR

Sharing Yara signature to detect this technique and IoCs below.

Update 17 Aug, 2020

Microsoft fixed this CVE-2020-1464 (Windows Spoofing Vulnerability) as malware
authors started actively exploiting this old bug which was discovered in Aug 2018. If
you are interested to also learn about technical analysis about GlueBall CVE-2020-
1464, please check out the awesome article by @TalBeerySec.
Brian Krebs posted an article about this CVE-2020-1464 (GlueBall).

6. Yara Signature

Note: I haven’t checked this yara signature on a clean set of files so it may cause FP.

7. Indicator of Compromise(IOCs)
MD5

Ratty

13a4072d8d0eba59712bb4ec251e0593 -> This hash analysed in this post
63bed40e369b76379b47818ba912ee43
fa8118a9fa20a17018cb2f60fd28a5b7
4a3d69c28c4742177d6238bc16486f0d
48a5714147ee85374ab74174a82ab77a

Adwind

85eb931d0d27179ae7c13085fb050b11

Thanks to @c_APT_ure for sharing following hashes related to this technique

Ratty

800fbf461f13facf4799e96f5026fd47 shipment.label.jar
f3ea296ad35eec33ea436febd97ff0e2 Shipment-label.jar
80908e5e21c3aff7e8bcaccdbb99e02e 21-04-2020.jar
83aaba8a3cd871441d2c386aaa3ee0e0 TrackingOrder.jar
c50b8615b8d6613f92586224b15bc9ac tracking.update.jar
1eb30fec5a58dc7a6af2c17d7e8327d0 ups-label.jar
85e8e4e814c29ce8779772fca4df64d7 21-05-2020.jar
a49c0e0d1ca8a829a8175a3931e5cba1 a49c0e0d1ca8a829a8175a3931e5cba1.jar
4a2d5424f87d1d4cdcd8a9bea81d2e2a shipment.delivery.label.06-03.jar

[13]

[14]

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1464
https://twitter.com/c_APT_ure
https://pastebin.com/LDFf3snu

12/12

Adwind, Thanks to @c_APT_ure for sharing the hashes

0559defe2122020a2733fafbd6443fd6 2.jar
7239fb81b1771e2aa38edbe0b68e40d5 CONFIRMATION_SWIFT.pdf.jar

Hope you enjoyed this post, please Follow @Securityinbits me on Twitter to get the latest
update about my malware analysis & DFIR journey. Happy Reversing 😊

https://twitter.com/c_APT_ure
https://twitter.com/Securityinbits?ref_src=twsrc%5Etfw

