
1/29

BackDoor.ShadowPad.1
vms.drweb.com/virus/

Packer:

NSPack

Compilation date:

02.07.2017 05:59:15

SHA1 hash:

4bba897ee81240b10f9cca41ec010a26586e8c09

Description

It is a multi-module backdoor written in C and Assembler and designed to run on 32-bit and
64-bit Microsoft Windows operating systems. It is used in targeted attacks on information
systems for gaining unauthorized access to data and transferring it to C&C servers. Its key
feature is utilizing hardcoded plug-ins that contain the main backdoor’s functionality.

Operating routine

The backdoor’s DLL library is loaded into RAM by DLL Hijacking using the genuine
executable file TosBtKbd.exe from TOSHIBA CORPORATION. On the infected computer, the
file was named msmsgs.exe.

.>sigcheck -a msmsgs.exe_
 Verified: Signed
 Signing date: 5:24 24.07.2008
 Publisher: TOSHIBA CORPORATION
 Company: TOSHIBA CORPORATION.
 Description: TosBtKbd
 Product: Bluetooth Stack for Windows by TOSHIBA
 Prod version: 6, 2, 0, 0
 File version: 6, 2, 0, 0
 MachineType: 32-bit
 Binary Version: 6.2.0.0
 Original Name: TosBtKbd.exe
 Internal Name: n/a
 Copyright: Copyright (C) 2005-2008 TOSHIBA CORPORATION, All rights reserved.
 Comments: n/a
 Entropy: 5.287

https://vms.drweb.com/virus/?i=21995048

2/29

The backdoor can be related to BackDoor.Farfli.125, since both malware programs use the
same C&C server — www[.]pneword[.]net.

The sample was located on the infected computer in C:\ProgramData\Messenger\ and was
installed as the Messenger service.

It is worth noting that BackDoor.Farfli.125 can execute the 0x7532 command, which is used
to start a service with the same name — Messenger.

Start of operation

The malicious library has two export functions:

SetTosBtKbdHook
UnHookTosBtKbd

The module name specified in the export table is TosBtKbd.dll.

The DLLMain function and the UnHookTosBtKbd export function are stubs.

The SetTosBtKbdHook function performs an exhaustive search through the handles in order
to find objects whose names contain TosBtKbd.exe and then closes them.

https://vms.drweb.com/search/?q=BackDoor.Farfli.125&lng=en

3/29

int __stdcall check_handles()
{
 ULONG v0; // ecx
 HMODULE v1; // eax
 int result; // eax
 int iter; // esi
 int v4; // eax
 ULONG ReturnLength; // [esp+0h] [ebp-4h] BYREF
 ReturnLength = v0;
 if (*(_DWORD *)NtQueryObject
 || (v1 = GetModuleHandleA(aNtdllDll),
 result = (int)GetProcAddress(v1, aNtqueryobject),
 (*(_DWORD *)NtQueryObject = result) != 0))
 {
 iter = 0;
 while (1)
 {
 if (NtQueryObject((HANDLE)(4 * iter), ObjectNameInformation,
&object__name_info, 0x1000u, &ReturnLength) >= 0)
 {
 v4 = lstrlenW(object__name_info.Name.Buffer);
 do
 --v4;
 while (v4 > 0 && object__name_info.Name.Buffer[v4] != 92);
 if (!lstrcmpiW(&object__name_info.Name.Buffer[v4 + 1], String2))
 break;
 }
 if (++iter >= 100000)
 return 0;
 }
 result = CloseHandle((HANDLE)(4 * iter));
 }
 return result;
}

After that, the shellcode stored in the backdoor body is decrypted using SetTosBtKbdHook.

4/29

Shellcode decryption algorithm:

5/29

def LOBYTE(v):
 return v & 0xFF
def dump_shellcode(addr, size, key):
 buffer = get_bytes(addr, size)
 result = b""
 for x in buffer:
 result += bytes([x ^ LOBYTE(key)])
 key = ((key * 0x6A730000) - (((key >> 0x10) * 0x39F3958D)) - 0x5C0BB335) &
0xFFFFFFFF
 i = 0
 for x in result:
 patch_byte(addr + i, x)
 i += 1

The decrypted shellcode utilizes obfuscation by using two consecutive conditional JMP
instructions at a single address.

After bypassing obfuscation, the function becomes correct:

https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_02.png
https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_03.png

6/29

The shellcode is designed for loading the main payload, which is a disassembled PE module
without the MZ and PE headers. A custom header consisting of separate parts of standard
headers is used for the loading.

struct section
{
 DWORD RVA;
 DWORD raw_data_offset;
 DWORD raw_data_len;
};
struct module_header
{
 DWORD key;
 DWORD key_check;
 DWORD import_table_RVA;
 DWORD original_ImageBase;
 DWORD relocation_table_RVA;
 DWORD relocation_table_size;
 DWORD IAT_RVA;
 DWORD IAT_size;
 DWORD EP_RVA;
 WORD HDR32_MAGIC;
 WORD word;
 DWORD number_of_sections;
 DWORD timestamp;
 section section_1;
 section section_2;
 section section_3;
 section section_4;
};

The header is stored in the shellcode after the first block of instructions.

https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_04.png

7/29

The module_loader function then loads the payload directly. First, through the PEB structure,
the backdoor obtains the addresses of the following functions from kernel32:

LoadLibraryA
GetProcAddress
VirtualAlloc
Sleep

Kernel32 library name and the specified APIs are searched by the hash of the name, which
is calculated by the algorithm:

def rol(val, r_bits, max_bits=32):
 return (val << r_bits%max_bits) & (2**max_bits-1) | ((val & (2**max_bits-1)) >>
(max_bits-(r_bits%max_bits)))
def ror(val, r_bits, max_bits=32):
 return ((val & (2**max_bits-1)) >> r_bits%max_bits) | (val << (max_bits-
(r_bits%max_bits)) & (2**max_bits-1))
def libnamehash(lib_name):
 result = 0
 b = lib_name.encode()
 for x in b:
 result = ror(result, 8)
 x |= 0x20
 result = (result + x) & 0xFFFFFFFF
 result ^= 0x7C35D9A3
 return result
def procnamehash(proc_name):
 result = 0
 b = proc_name.encode()
 for x in n:
 result = ror(result, 8)
 result = (result + x) & 0xFFFFFFFF
 result ^= 0x7C35D9A3
 return result

After receiving the API addresses, the backdoor checks the integrity of the header values
using an algorithm based on the XOR operation — module_header.key ^
module_header.key_check. The value must be 0x7C35D9A3 and it is the same value used
when hashing function names from kernel32. After that, it checks the value of the signature
module_header.HDR32_MAGIC signature that must be equal to 0x10B. The backdoor then
allocates an executable buffer of the module_header.import_table_RVA size and adds
0x4000 for the module.

After that, it fills a block with the size of 0x1000 bytes at the beginning of the
module_header.section_1.RVA allocated buffer. That buffer is where the PE header of the
loaded module should have been located.

8/29

The ECX register initially contains the address of the allocated executable buffer.

The backdoor then loads the module sections according to their RVA (Relative Virtual
Address). Section data is stored in the shellcode after the header, and the offset to the
(section.raw_data_offset) data is counted from the beginning of the header.

After the sections, the program processes relocations that are stored as
IMAGE_BASE_RELOCATION structures, but each WORD, which is responsible for the
relocation type and for the offset from the beginning of the block, is encrypted. The initial key
is taken from module_header.key, and it changes after each iteration. It is worth noting that
the key obtained after all iterations will be used for processing import functions.

Relocations processing algorithm:

https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_05.png

9/29

import struct
def relocations(image_address, original_image_base, relocation_table_RVA):
 global key
 relocation_table_addr = image_address + relocation_table_RVA
 reloc_hdr_data = get_bytes(relocation_table_addr, 8)
 block_address, size_of_block = struct.unpack('<II', reloc_hdr_data)
 while size_of_block:
 if ((size_of_block - 8) >> 1) > 0:
 block = get_bytes(relocation_table_addr + 8, size_of_block - 8)
 i = 0
 while i < ((size_of_block - 8) >> 1):
 reloc = struct.unpack('<H', block[i*2:i*2+2])[0]
 reloc_type = ((reloc ^ key) & 0xFFFF) >> 0x0C
 offset = (reloc ^ key) & 0xFFF
 offset_high = (((key >> 0x10) + reloc) & 0xFFFFFFFF) | ((key << 0x10)
& 0xFFFFFFFF)
 key = offset_high
 if reloc_type == 3:
 patch_addr = offset + image_address + block_address
 delta = (image_address - original_image_base) & 0xFFFFFFFF
 value = get_wide_dword(patch_addr)
 patch_dword(patch_addr, (value + delta) & 0xFFFFFFFF)
 elif reloc_type == 0x0A:
 patch_addr = image_address + offset + + block_address
 delta = (image_address - original_image_base) & 0xFFFFFFFF
 old_low = get_wide_dword(patch_addr)
 old_high = get_wide_dword(patch_addr + 4)
 patch_dword(patch_addr, (old_low + offset) & 0xFFFFFFFF)
 patch_dword(patch_addr + 4, (old_high + offset_high) &
0xFFFFFFFF)
 i += 1
 relocation_table_addr += size_of_block
 reloc_hdr_data = get_bytes(relocation_table_addr, 8)
 block_address, size_of_block = struct.unpack('<II', reloc_hdr_data)

After all the relocations are processed, the structure is filled with null values.

Next, BackDoor.ShadowPad.1 starts processing the import functions. In general, the
procedure is standard, but the names of libraries and functions are encrypted. The key that
was modified after processing the relocations is used, and is also changed after each
encryption iteration. After processing the next import function, its address is not placed
directly in the cell specified relative to IMAGE_IMPORT_DESCRIPTOR.FirstThunk. Instead,
a block of instructions is generated that passes control to the API:

mov eax, <addr>
neg eax

jmp eax

Algorithm for processing import functions:

10/29

def imports(image_address, IAT_RVA,):
global key
IAT_address = image_address + IAT_RVA
import_table_address = image_address + 0x1A000
import_descriptor_address = IAT_address
while True:
 OriginalThunkData, TimeDateStamp, ForwarderChain, Name, FirstThunk =
struct.unpack('<IIIII', get_bytes(import_descriptor_address, 0x14))
 TimeDateStamp = 0
 ForwarderChain = 0
 OriginalThunkData_address = image_address + OriginalThunkData
 FirstThunk_address = image_address + FirstThunk
 libname_address = image_address + Name
 n1 = get_wide_byte(libname_address)
 libname_decrypted = bytes([(n1 ^ key) & 0xFF])
 key = ((key >> 0x08) + c_byte(n1).value) | ((key << 0x18) & 0xFFFFFFFF)
 i = 1
 nb = get_wide_byte(libname_address + i)
 while libname_decrypted[-1]:
 libname_decrypted += bytes([(nb ^ key) & 0xFF])
 key = ((key >> 0x08) + c_byte(nb).value) | ((key << 0x18) & 0xFFFFFFFF)
 i += 1
 nb = get_wide_byte(libname_address + i)
 libname_decrypted = libname_decrypted[:-1]
 print("Imports from {0}".format(libname_decrypted[:-1]))
 thunk = get_wide_dword(OriginalThunkData_address)
 it_ptr = 0
 j = 0
 while thunk:
 name_address = image_address + thunk + 2
 nb1 = get_wide_byte(name_address)
 func_name = bytes([(nb1 ^ key) & 0xFF])
 key = ((key >> 0x08) + c_byte(nb1).value) | ((key << 0x18) & 0xFFFFFFFF)
 i = 1
 nb = get_wide_byte(name_address + i)
 while func_name[-1]:
 func_name += bytes([(nb ^ key) & 0xFF])
 key = ((key >> 0x08) + c_byte(nb).value) | ((key << 0x18) & 0xFFFFFFFF)
 i += 1
 nb = get_wide_byte(name_address + i)
 func_name = func_name[:-1]
 print("Function {0}".format(func_name))
 j_type = key % 5
 if j_type == 0:
 patch_byte(import_table_address, 0xE8)
 elif j_type == 1:
 patch_byte(import_table_address, 0xE9)
 elif j_type == 2:
 patch_byte(import_table_address, 0xFF)
 elif j_type == 3:
 patch_byte(import_table_address, 0x48)
 elif j_type == 4:

11/29

 patch_byte(import_table_address, 0x75)
 else:
 patch_byte(import_table_address, 0x00)
 import_table_address += 1
 patch_dword(FirstThunk_address + it_ptr, import_table_address) #addr to
trampoline
 func_addr = binascii.crc32(func_name) & 0xFFFFFFFF
 patch_byte(import_table_address, 0xB8)
 patch_byte(import_table_address + 1, func_addr)
 patch_word(import_table_address + 5, 0xD8F7)
 patch_word(import_table_address + 7, 0xE0FF)
 import_table_address += 9
 j += 1
 it_ptr = j << 2
 thunk = get_wide_dword(OriginalThunkData_address + it_ptr)
 import_descriptor_address += 0x14
 if not get_wide_dword(import_descriptor_address):
 break

The import table is also filled with null values after processing.

The control is then passed to the loaded module. Arguments are passed as:

Address of the beginning of the buffer where the module is loaded,
Value 1 (code),
Pointer to the shellarg structure.

At the entry point, the loaded module checks the code passed from the loader:

1 — the main functionality,
0x64, 0x65 — no action provided,
0x66 — returns the code 0x64 in the third argument,

https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_06.png

12/29

0x67 — decrypts and returns the Root string (hereinafter Root — the name of the
module),
0x68 — in the third argument returns a pointer to the table of functions implemented in
this module.

Decryption algorithm:

def decrypt_str(addr):
key = get_wide_word(addr)
result = b""
i = 2
b = get_wide_byte(addr + i)
while i < 0xFFA:
 result += bytes([b ^ (key & 0xFF)])
 key = (((key >> 0x10) * 0x1447208B) + (key * 0x208B0000) - 0x4875A15) &
0xFFFFFFFF
 i += 1
 b = get_wide_byte(addr + i)
 if not result[-1]:
 break
result = result[:-1]
return result

It is worth noting that the code snippets contained in this module, as well as some objects,
are typical of the BackDoor.PlugX family.

When called with the code 1, the module proceeds to perform the main functions. At first, the
program registers a top-level exception handler. When receiving control, the handler
generates a debug string with information about the exception.

The program then outputs it using the OutputDebugString function, and writes it to the log file
located in %ALLUSERPROFILE%\error.log.

https://vms.drweb.com/search/?q=BackDoor.PlugX&lng=en
https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_07.png

13/29

Exception handlers are also registered in the BackDoor.PlugX family. In particular, in
BackDoor.PlugX.38 a string with information about the exception is formed, but the format
differs slightly:

https://vms.drweb.com/search/?q=BackDoor.PlugX.38&lng=en
https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_08.png
https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_09.png

14/29

After registering the handler, a table of auxiliary functions is formed that is used for
interaction between modules. Next, Root proceeds to load the additional built-in modules.

Each module is stored in an encrypted form and also compressed using the QuickLZ
algorithm. At the beginning, the module has a header size of 0x14 bytes. The header is
decoded during the first step. Encryption algorithm:

15/29

import struct

def LOBYTE(v):
 return v & 0x000000FF

def BYTE1(v):
 return (v & 0x0000FF00) >> 8

def BYTE2(v):
 return (v & 0x00FF0000) >> 16

def HIBYTE(v):
 return (v & 0xFF000000) >> 24

def decrypt_module(data, data_len, init_key):
 key = []
 for i in range(4):
 key.append(init_key)
 k = 0
 result = b""
 if data_len > 0:
 i = 0
 while i < data_len:
 if i & 3 == 0:
 t = key[0]
 key[0] = (0x9150017B - (t * 0xD45A840)) & 0xFFFFFFFF
 elif i & 3 == 1:
 t = key[1]
 key[1] = (0x95D6A3A8 - (t * 0x645EE710)) & 0xFFFFFFFF
 elif i & 3 == 2:
 t = key[2]
 key[2] = (0xD608D41B - (t * 0x1ED33670)) & 0xFFFFFFFF
 elif i & 3 == 3:
 t = key[3]
 key[3] = (0xD94925D3 - (t * 0x68208D35)) & 0xFFFFFFFF
 k = (k - LOBYTE(key[i & 3])) & 0xFF
 k = k ^ BYTE1(key[i & 3])
 k = (k - BYTE2(key[i & 3])) & 0xFF
 k = k ^ HIBYTE(key[i & 3])
 result += bytes([data[i] ^ k])
 i += 1
 return result

The initial value of the encryption key is stored in the module header. The structure looks as
follows:

16/29

struct plugin_header
{
 DWORD key;
 DWORD flags;
 DWORD dword;
 DWORD compressed_len;
 DWORD decompressed_len;
};

After decrypting the header, the backdoor checks the value of flags. If the 0x8000 flag is set,
it means that the module consists of only one header. Then the first byte’s zero bit value is
checked in the decrypted block. If the zero bit has the value 1, it means the module body is
compressed by the QuickLZ algorithm.

After unpacking, the malware checks the size of the resulting data with the values in the
header and proceeds directly to loading the module. To do so, it allocates an executable
memory buffer to which it copies the load function and then passes control to it. Each module
has the same format as the Root module, so it has its own header and encrypted import
functions and relocations; therefore, loading occurs in the same way. After the module is
loaded, the loader function calls its entry point with the code 1. Each module, like Root,
initializes its function table using this code. Then Root calls the entry point of the loaded
module sequentially with the codes 0x64, 0x66, and 0x68. This way, the backdoor initializes
the module and passes it pointers to the necessary objects.

Modules are represented as objects combined in a linked list. Referring to a specific module
is performed using the code the plug-in puts in its object after calling its entry point with the
code 0x66.

struct loaded_module
{
 LIST_ENTRY list;
 DWORD run_count;
 DWORD timestamp;
 DWORD code_id;
 DWORD field_14;
 BOOL loaded;
 BOOL unk;
 BOOL module_is_PE;
 DWORD module_size;
 LPVOID module_base;
 Root_helper *func_tab; //pointer to the function table of the Root Module
}

When referring to the module entry point with the code 0x67, a string is decrypted and
returned, which can be designated as the module name:

1 — Plugins
2 — Online

17/29

3 — Config
4 — Install
5 — TCP
6 — HTTP
7 — UDP
8 — DNS

If one converts the timestamp fields from the headers of each plugin to dates, one gets the
correct date and time values:

Plugins — 2017-07-02 05:52:53
Online — 2017-07-02 05:53:08
Config — 2017-07-02 05:52:58
Install — 2017-07-02 05:53:30
TCP — 2017-07-02 05:51:36
HTTP — 2017-07-02 05:51:44
UDP — 2017-07-02 05:51:50
DNS — 2017-07-02 05:51:55

After loading all the Root modules, the malware searches the list for the Install module and
calls the second of the two functions located in its function table.

Install

First of all, the backdoor gets the SeTcbPrivilege and SeDebugPrivilege privileges. Then it
obtains the configuration using the Config module. To access functions, the adapter functions
of the following type are used:

https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_11.png

18/29

Through the object that stores the list of loaded modules, the backdoor finds the necessary
one using the code, then the necessary function is called through the table.

During the first step of the configuration initialization, the buffer stored in the Root module is
checked. If the first four bytes of this buffer are X, this means the backdoor needs to create a
default configuration. Otherwise, this buffer is an encoded configuration. The configuration is
stored in the same format as plug-ins — it is compressed using the QuickLZ algorithm and
encrypted using the same algorithm used for plug-in encryption. 0x858 bytes are reserved
for the decrypted and unpacked configuration. Its structure can be represented as follows:

19/29

struct config
{
 WORD off_id; //lpBvQbt7iYZE2YcwN
 WORD offset_1; //Messenger
 WORD off_bin_path; //%ALLUSERSPROFILE%\Messenger\msmsgs.exe
 WORD off_svc_name; //Messenger
 WORD off_svc_display_name; //Messenger
 WORD off_svc_description; //Messenger
 WORD off_reg_key_install; //SOFTWARE\Microsoft\Windows\CurrentVersion\Run
 WORD off_reg_value_name; //Messenger
 WORD off_inject_target_1; //%windir%\system32\svchost.exe
 WORD off_inject_target_2; //%windir%\system32\winlogon.exe
 WORD off_inject_target_3; //%windir%\system32\taskhost.exe
 WORD off_inject_target_4; //%windir%\system32\svchost.exe
 WORD off_srv_0; //HTTP://www.pneword.net:80
 WORD off_srv_1; //HTTP://www.pneword.net:443
 WORD off_srv_2; //HTTP://www.pneword.net:53
 WORD off_srv_3; //UDP://www.pneword.net:53
 WORD off_srv_4; //UDP://www.pneword.net:80
 WORD off_srv_5; //UDP://www.pneword.net:443
 WORD off_srv_6; //TCP://www.pneword.net:53
 WORD off_srv_7; //TCP://www.pneword.net:80
 WORD off_srv_8; //TCP://www.pneword.net:443
 WORD zero_2A;
 WORD zero_2C;
 WORD zero_2E;
 WORD zero_30;
 WORD zero_32;
 WORD zero_34;
 WORD zero_36;
 WORD off_proxy_1; //HTTP\n\n\n\n\n
 WORD off_proxy_2; //HTTP\n\n\n\n\n
 WORD off_proxy_3; //HTTP\n\n\n\n\n
 WORD off_proxy_4; //HTTP\n\n\n\n\n
 DWORD DNS_1; //8.8.8.8
 DWORD DNS_2; //8.8.8.8
 DWORD DNS_3; //8.8.8.8
 DWORD DNS_4; //8.8.8.8
 DWORD timeout_multiplier; //0x0A
 DWORD field_54; //zero
 //data
};

Fields named off_* contain offsets to encrypted strings from the beginning of the
configuration. The strings are encrypted with the same algorithm as used to encrypt the
names of the plug-ins. After initialization, the backdoor also attempts to get the configuration
from the file located in the %ALLUSERSPROFILE%\<rnd1>\<rnd2>\<rnd3>\<rnd4>
directory.. The path and file name elements are generated during execution and depend on
the serial number of the system partition.

20/29

After initializing the configuration, the mode parameter is checked, which is stored in the
shellarg structure. That structure is filled in by the loader (shellcode) and stored in the
stage_1 module.

struct shellarg
{
 module_header *p_module_header;
 DWORD module_size;
 DWORD mode;
 DWORD unk;
}

The algorithm provides a number of possible values for the mode parameter — 2, 3, 4, 5, 6,
7. If the value is different from the listed ones, the backdoor is installed in the system, and
then the main functions are performed.

A series of values 2, 3 ,4 — to begin interaction with the C&C server, bypassing the
installation.

A series of values 5, 6 — to work with the plug-in with the code 0x6A stored in the registry.

Value 7 — using the IFileOperation interface, the source module is copied to %TEMP%, as
well as to System32 or SysWOW64, depending on the system bitness. This is necessary to
restart the backdoor with UAC bypass using the wusa.exe file.

Backdoor installation process

During installation, the backdoor checks the current path of the executable file by comparing
it with the value of off_bin_path from the configuration
(%ALLUSERSPROFILE%\Messenger\msmsgs.exe). If the path does not match and the
backdoor is launched for the first time, a mutex is created, the name of which is generated as
follows:

Format of the mutex name for wsprintfW is Global\%d%d%d.

Then checks whether UAC is enabled. If control is disabled, the malware creates the
control.exe process (from System32 or SysWOW64, depending on the system's bitness) with
the CREATE_SUSPENDED flag. After that, the backdoor injects the Root module into it,
using WriteProcessMemory. Before doing this, the backdoor also implements a function that
loads the module and transfers control to it. If UAC is enabled, this step is skipped.

https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_12.png

21/29

The main executable file (msmsgs.exe) and TosBtKbd.dll are copied to the directory
specified in the off_bin_path parameter and then installed as a service. The service name,
display name, and description are contained in the configuration (parameters off_svc_name,
off_svc_display_name, and off_svc_description). In this sample all three parameters have
the Messenger value. If the service fails to start, the backdoor is registered in the registry.
The key and parameter name for this case are also stored in the configuration
(off_reg_key_install and off_reg_value_name parameters).

After installation, the backdoor attempts to inject the Root module into one of the processes
specified in the configuration (off_inject_target_<1..4>). If successful, the current process
terminates, and the new process (or service) proceeds to interact with the C&C server.

A separate thread is created for this purpose. After that, a new registry key is created or an
existing registry key is opened, which is used as the malware's virtual file system. The key is
located in the Software\Microsoft\<key> branch, and the <key> value is also generated
depending on the serial number of the system volume. The key can also be located in the
HKLM and HKCU, depending on the privileges of the process. Next, the
RegNotifyChangeKey function tracks changes in this key. Each parameter is a compressed
and encrypted plug-in. The backdoor extracts each value and loads it as a module, adding it
to the list of available ones.

This functionality is executed in a separate thread.

The next step generates a pseudo-random sequence from 3 to 9 bytes long, which is written
to the registry in the SOFTWARE\ key located in the HKLM or HKCU. The parameter name
is also generated and is unique for each computer. This value is used as the ID of the
infected device.

https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_13.png

22/29

After that, the backdoor extracts the address of the first C&C server from the configuration.
The server storage format is as follows: <protocol>://<address>:<port>. In addition to the
values that explicitly define the protocol used (HTTP, TCP, UDP), the URL value can also be
specified. In this case, the backdoor refers to this URL and receives a new address of the
C&C server in response, using the domain generation algorithm (DGA). The algorithm
generates the string:

23/29

wstr *__stdcall dga(wstr *p_wstr)
{
 unsigned int v1; // ecx
 unsigned int v2; // edi
 unsigned int v3; // esi
 unsigned int v4; // edx
 char v5; // dl
 wstr *v6; // eax
 wstr *v7; // esi
 wstr tmp_str; // [esp+10h] [ebp-34h] BYREF
 char generated_char_str[16]; // [esp+20h] [ebp-24h] BYREF
 struct _SYSTEMTIME SystemTime; // [esp+30h] [ebp-14h] BYREF
 GetSystemTime_0(&SystemTime);
 if (SystemTime.wDay > 0xAu)
 {
 if (SystemTime.wDay > 0x14u)
 v1 = 0xE52F65F3 * SystemTime.wYear - 0x2527D2DD * SystemTime.wMonth -
0x4BA7EAF5;
 else
 v1 = 0xF108D240 * SystemTime.wMonth - 0x78C6249D * SystemTime.wYear -
0x17AB943D;
 }
 else
 {
 v1 = 0xF5D6C030 * SystemTime.wMonth - 0x5FBD1755 * SystemTime.wYear - 0x5540E1B0;
 }
 v2 = 0;
 v3 = v1 % 7;
 do
 {
 v4 = v1 % 0x34;
 if (v1 % 0x34 >= 0x1A)
 v5 = v4 + 39;
 else
 v5 = v4 + 97;
 v1 = 13 * v1 + 7;
 generated_char_str[v2++] = v5;
 }
 while (v2 <= v3 + 7);
 generated_char_str[v3 + 8] = 0;
 v6 = wstr::assign_char_str_pl2(&tmp_str, generated_char_str);
 v7 = (wstr *)wstr::init_by_wchar_pl2(p_wstr, (LPCWSTR)v6->buffer_wchar);
 wstr::clean_pl2(&tmp_str);
 return v7;
}

The resulting string is combined with the string stored in the configuration, using the part
before the @ symbol. The received URL is used for an HTTP request, which is answered
with the encoded address of the C&C server.

24/29

After that, a connection object is created that corresponds to the protocol specified for this
server.

TCP

SOCKS4, SOCKS5, and HTTP proxy protocols are supported when connecting over TCP. At
the beginning, a socket is created and a connection to the server is established in keep-alive
mode. A packet with the following header format is used for communication with the server:

struct packet_header
{
 DWORD key;
 DWORD id;
 DWORD module_code;
 DWORD compressed_len;
 DWORD decompressed_len;
};

HTTP

When using the HTTP protocol, data is sent by a POST request:

Data transfer over HTTP is performed by the handler function in a separate thread. The
mechanism is similar to that of BackDoor.PlugX.

DNS servers from the configuration are used to resolve the addresses of C&C servers (in
this sample all 4 addresses are 8.8.8.8). The first packet sent to the server is a sequence of
zeros from 0 to 0x3f bytes in length. The length is selected randomly.

The backdoor receives a response from the server, which is then decrypted and unpacked.
Then, the packet header checks the module_code value, which contains the code of the
plug-in for which the command was received. The backdoor refers to the plug-in whose code
is specified in the command and calls the function for processing commands from its table.
The ID of the command itself is contained in the id field of the header.

Operating with plug-ins

Command IDs for the Plugins module can have the following values id — 0x650000,
0x650001, 0x650002, 0x650003, or 0x650004. In fact, the Plugins module is a plug-in
manager, allowing one to register new plug-ins and delete existing ones.

https://st.drweb.com/static/new-www/vmsImg/BackDoor.ShadowPad.1_14.png

25/29

Command
ID Description

0x650003 Deletes the specified plug-in from the storage in the registry.

0x650000 Sends information about available plug-ins.

Value Size, byte

plug-in name variable length null-terminated string

number of plug-in calls 4

DateTimeStamp 4

plug-in code 4

loaded_module.field_14 (unknown) 4

status (loaded or not) 4

initialized 4

size 4

base address 8

0x650001 Body of the command contains a new plug-in. The plug-in format is the same
as the built-in ones. The backdoor compresses it with the QuickLZ algorithm,
encrypts it and stores it in the registry storage, then pauses the current
thread so the plug-in processing thread loads a new plug-in from the registry
storage.

0x650002 The command contains the name of the DLL that the backdoor attempts to
load, and then sequentially calls its entry point with dwReason 0x64, 0x66,
0x68.

0x650004 The command contains the module code. If a plug-in with the specified code
is present in the list, the backdoor deinitializes it.

Online

The command IDs for the Online plug-in can have the values 0x680002, 0x680003,
0x680004, or 0x680005.

Command
ID Description

26/29

0x680002 Starts processing commands for plug-ins in a separate thread and initializes
a new connection to the current server.

0x680003 Sends system information. It can be represented as the structure:

struct date
{
 BYTE year; //+0x30
 BYTE month;
 BYTE day;
 BYTE hour;
 BYTE minute;
 BYTE second;
 BYTE space;
}

struct sysinfo
{
 byte id[8];
 DWORD datestamp1; //20150810
 DWORD datestamp2; //20170330
 BYTE year; //+0x30
 BYTE month;
 BYTE day;
 BYTE hour;
 BYTE minute;
 BYTE second;
 BYTE space;
 DWORD module_code;
 WORD module_timestamp; //the lower 2 bytes of the
loaded_module.timestamp field of the connection module
 DWORD IP_address;
 LARGE_INTEGER total_physical_memory;
 DWORD cpu_0_MHZ;
 DWORD number_of_processors;
 DWORD dwOemID;
 LARGE_INTEGER total_disk_space[number_of_disks]; //iterates all
disks starting from C:
 DWORD pels_width; //screen width in pixels
 DWORD pels_height; //screen height in pixels
 DWORD LCID;
 LARGE_INTEGER perfomance_frequency; //pseudo-random value generated
using QueryPerformanceCounter and QueryPerformanceFrequency
 DWORD current_PID;
 DWORD os_version_major;
 DWORD os_version_minor;
 DWORD os_version_build_number;
 DWORD os_version_product_type;
 DWORD sm_Server_R2_build_number; //GetSystemMetrics(SM_SERVERR2)
 //the strings below - null-terminated
 char hostname[x];
 char domain_name[x];
 char domain__username[x]; //separated "/"
 char module_file_name[x];
 char osver_info_szCSDVersion[x];
 char str_from_config_offset1[x]; //Messenger
}

The id value is the unique identifier of the infected computer stored in the
registry.

27/29

It is worth noting that the values of the datestamp1 and datestamp2 fields are
set to 20150810 and 20170330, respectively. Similar constants in the form of
dates were also used in PlugX backdoor plug-ins.

0x680004 Sends a packet with a random length body (from 0 to 0x1F bytes). The
packet body is filled with 0.

0x680005 Sends an empty packet (header only) and then calls Sleep(1000) 3 times in a
row.

Config

This is a plug-in for working with the configuration.

Command ID Description

0x660000 Sends the current configuration to the server.

0x660001 Receives and applies the new configuration.

0x660002 Deletes the saved configuration file.

Install

Command
ID Description

0x670000 Installs the backdoor as a service or installs it in the registry.

0x670001 Calls Sleep(1000) three times in a row, then checks the shellarg.mode
parameter: if its value is 4, it then terminates the current process.

Artifacts

In the historical WHOIS record of the С&С server domain, one can observe the Registrar's
email address: ddggcc@189[.]cn.

The same address is found in the icefirebest[.]com and www[.]arestc[.]net domain records,
which were contained in the configurations of PlugX backdoor samples installed on the same
computer.

28/29

Domain Name: ICEFIREBEST.COM

Registry Domain ID: 2042439159_DOMAIN_COM-VRSN
Registrar WHOIS Server: whois.1api.net

Registrar URL: http://www.1api.net

Updated Date: 2016-07-28T16:55:13Z
Creation Date: 2016-07-13T01:39:31Z

Registrar Registration Expiration Date: 2017-07-13T01:39:31Z

Registrar: 1API GmbH
Registrar IANA ID: 1387

Registrar Abuse Contact Email: abuse@1api.net

Registrar Abuse Contact Phone: +49.68416984x200
Domain Status: ok - http://www.icann.org/epp#OK

Registry Registrant ID:

Registrant Name: edward davis
Registrant Organization: Edward Davis

Registrant Street: Tianhe District Sports West Road 111

Registrant City: HONG KONG
Registrant State/Province: Hongkong

Registrant Postal Code: 510000
Registrant Country: HK

Registrant Phone: +86.2029171680

Registrant Phone Ext:
Registrant Fax: +86.2029171680

Registrant Fax Ext:

Registrant Email: ddggcc@189.cn
Registry Admin ID:

Admin Name: edward davis

Admin Organization: Edward Davis
Admin Street: Tianhe District Sports West Road 111

Admin City: HONG KONG

Admin State/Province: Hongkong
Admin Postal Code: 510000

Admin Country: HK

Admin Phone: +86.2029171680
Admin Phone Ext:

Admin Fax: +86.2029171680

Admin Fax Ext:
Admin Email: ddggcc@189.cn

Registry Tech ID:

Tech Name: edward davis
Tech Organization: Edward Davis

Tech Street: Tianhe District Sports West Road 111

Tech City: HONG KONG
Tech State/Province: Hongkong

Tech Postal Code: 510000

Tech Country: HK
Tech Phone: +86.2029171680

Tech Phone Ext:

Tech Fax: +86.2029171680
Tech Fax Ext:

Tech Email: ddggcc@189.cn
Name Server: ns1.ispapi.net 194.50.187.134

Name Server: ns2.ispapi.net 194.0.182.1

Name Server: ns3.ispapi.net 193.227.117.124
DNSSEC: unsigned

URL of the ICANN WHOIS Data Problem Reporting System:

http://wdprs[.]internic[.]net/

29/29

Domain Name: ARESTC.NET

Registry Domain ID: 2196389400_DOMAIN_NET-VRSN
Registrar WHOIS Server: whois.1api.net

Registrar URL: http://www.1api.net

Updated Date: 2017-12-06T08:43:04Z
Creation Date: 2017-12-06T08:43:04Z

Registrar Registration Expiration Date: 2018-12-06T08:43:04Z

Registrar: 1API GmbH
Registrar IANA ID: 1387

Registrar Abuse Contact Email: abuse@1api.net

Registrar Abuse Contact Phone: +49.68416984x200
Domain Status: ok - http://www.icann.org/epp#OK

Registry Registrant ID:

Registrant Name: li yiyi
Registrant Organization: li yiyi

Registrant Street: Tianhe District Sports West Road 111

Registrant City: GuangZhou
Registrant State/Province: Guangdong

Registrant Postal Code: 510000
Registrant Country: CN

Registrant Phone: +86.2029179999

Registrant Phone Ext:
Registrant Fax: +86.2029179999

Registrant Fax Ext:

Registrant Email: ddggcc@189.cn
Registry Admin ID:

Admin Name: li yiyi

Admin Organization: li yiyi
Admin Street: Tianhe District Sports West Road 111

Admin City: GuangZhou

Admin State/Province: Guangdong
Admin Postal Code: 510000

Admin Country: CN

Admin Phone: +86.2029179999
Admin Phone Ext:

Admin Fax: +86.2029179999

Admin Fax Ext:
Admin Email: ddggcc@189.cn

Registry Tech ID:

Tech Name: li yiyi
Tech Organization: li yiyi

Tech Street: Tianhe District Sports West Road 111

Tech City: GuangZhou
Tech State/Province: Guangdong

Tech Postal Code: 510000

Tech Country: CN
Tech Phone: +86.2029179999

Tech Phone Ext:

Tech Fax: +86.2029179999
Tech Fax Ext:

Tech Email: ddggcc@189.cn
Name Server: ns1.ispapi.net 194.50.187.134

Name Server: ns2.ispapi.net 194.0.182.1

Name Server: ns3.ispapi.net 193.227.117.124
DNSSEC: unsigned

URL of the ICANN WHOIS Data Problem Reporting System:

http://wdprs[.]internic[.]net/

