
1/7

View all posts by Jamie June 19, 2020

zloader: VBA, R1C1 References, and Other Tomfoolery
clickallthethings.wordpress.com/2020/06/19/zloader-vba-r1c1-references-and-other-tomfoolery/

The other day, @reecDeep tweeted about new behavior from zloader documents. Another
document from the same campaign crossed my path and I decided to take a crack at it.

order_93711.xls
 SHA256:

B29C145D4B78DAED34DEA28A0A11BAB857D5583DC6A00578A877511D0D01D3D2

URLS:
 https[:]//wireborg.com/wp-keys.php

 http[:]//zmedia.shwetech.com/wp-keys.php
 https[:]//datalibacbi.ml/wp-keys.php

 https[:]//procacardenla.ga/wp-keys.php

Row and Column References

One of the first things you may notice is that this document doesn’t have the typical letters
designating the columns. Instead, this document is using the R1C1 reference style. This was
not done by accident. The Excel 4.0 macros used throughout this document depend upon
this format.

https://clickallthethings.wordpress.com/2020/06/19/zloader-vba-r1c1-references-and-other-tomfoolery/
https://twitter.com/reecdeep/status/1273665225070444548
https://app.any.run/tasks/a03dbd65-7949-4570-8ebf-89c060244b46


2/7

Getting around “Enable content”

The first sticking point was getting the ability to control execution of the macro. This proved
to be a bit difficult. If the ‘Enable Content’ button is showing up, this means that some
macros must exist, right? However, the VBAProject contents showed both Sheet1 and
ThisWorkbook as blank.

So there were no macros… yet we were still being prompted to enable them. If you did
enable them, the macro would execute with no opportunity to interrupt anything before the
document would close. I decided to add a simple macro to the project to see if that would
help me control execution.

I noticed that when I saved my changes, the size of the document changed.

Opening the copy while holding down the shift key brought up this security notification.
Choosing “Enable Macros” allowed me to control execution and continue the analysis.



3/7

Finding the Entry Point – R27455C174

As this is an XLM 4.0 macro document, the macro commands in the cells will execute
sequentially until the commands send execution path elsewhere. Possible commands for
which to search would be =FORMULA or =GOTO. I started by searching for =FORMULA.
Once I found one, I started to step through the macro code to see what would happen. It took
a few tries, but the entry point for this document is R27455C174. From here, you can right-
click that cell and select Run.

We can also see how this document makes use of the R1C1 notation. From what I
understand so far, a positive number means you add that number of rows/cells to the current
row/cell, and a negative number means you subtract that number of rows/cells to the current
row/cell. In this case, it seems that the row being referenced is 51762 rows down and 81
columns to the left. However, I tried going to that cell but found it to be empty. I might be
missing something obvious, but in the grand scheme of things, knowing exactly how this
particular cell works is more of an academic exercise.

Either way, you could just right-click on the cell, choose Run, Step Into, and then Evaluate a
few times get the code execution rolling. You’ll see that =GOTO(”) ends up moving you to cell
R46304C95.

BLOCK 1 – R46304C95



4/7

This cell is where characters from other cells are assembled into a string. We can see that
the first one is “=CLOSE(FALSE)”. We can continue evaluating all of these until we get to the
=GOTO() at the bottom.

BLOCK 2 – R48037C63

That =GOTO() takes us to R48037C63. This cell fills in the cells below with the same string.
The commands in the following cells take the strings from Block 1 and write them to a new
location. For example, let’s look at R48038C63. It says to take the information in a cell that is
1734 rows up and 32 columns to the right and move it 14892 rows up and 20 columns to the
left. This continues on until the =GOTO() at the bottom of this block.

BLOCK 3 – R33147C43 – Evasion checks



5/7

The next block starts at R33147C43. It contains everything that was written above. Let’s
analyze it in pieces. The first portion contains the familiar sandbox checks. Notice how if any
of those checks fail, you GOTO(R33146C43). That cell contains =CLOSE(FALSE) which
immediately stops execution.

A .vbs file is then created in the C:\Users\Public folder. The lines in cells 33160-65 are
written to that file which is then closed.

The next section executes the .vbs file. This file reads information from the system registry
containing VBAWarnings. The output is returned to the .txt file. The .vbs file is then deleted,
the .txt file is opened, read, and deleted. If the .txt file contains a 1, go back to
=CLOSE(FALSE). If not, check environment. If it has a 32 in the results (which it does),
GOTO(R13419C196).

BLOCK 4 – R13419C196

This brings us to yet another series of cells getting assembled into strings. We can step
through them as before to the =GOTO(”).



6/7

BLOCK 5 – R28840C118

Once again, this block takes the strings from above and copies them elsewhere.

BLOCK 6 – R38562C99

And finally, we can see the final execution commands in this document. There are four URLs
from which to download a file to C:\Users\Public\lxlGZ4A.html and execute it using
rundll32.exe. Notice that if it fails the size check, it doesn’t go through the rest of the URLs.
Instead, it immediately jumps down to the ALERT message. I’m guessing this helps to hide
the rest of the URLs from showing up in Wireshark or something.



7/7

CONCLUSION

Many of the sandbox evasion techniques used are the same as before. The added difficulty
was the use of (nonexistent) VBA macros, more ways to disguise the commands being run,
and ways to hide the other URLs.

As always, thanks for reading.


