
1/9

Microcin is here
securelist.com/microcin-is-here/97353

Authors

	Denis Legezo

With asynchronous sockets, steganography, GitLab ban and a sock

In February 2020, we observed a Trojan injected into the system process memory on a particular host. The
target turned out to be a diplomatic entity. What initially attracted our attention was the enterprise-grade API-
like (application programming interface) programming style. Such an approach is not that common in the
malware world and is mostly used by top-notch actors.

Due to control server reuse (Choopa VPS service), target profiling techniques and code similarities, we
attribute this campaign with high confidence to the SixLittleMonkeys (aka Microcin) threat actor. Having said
that, we should note that they haven’t previously applied the aforementioned coding style and software
architecture. During our analysis we didn’t observe any similar open source tools, and we consider this to be
the actor’s own custom code.

https://securelist.com/microcin-is-here/97353
https://securelist.com/author/denislegezo/


2/9

To deliver a new network module with a coding style that we consider enterprise-grade, Microcin used
steganography inside photos, including this one of a sock (payload removed here)

SixLittleMonkeys’ sphere of interest remains the same – espionage against diplomatic entities. The actor is
still also using steganography to deliver configuration data and additional modules, this time from the
legitimate public image hosting service cloudinary.com. The images include one related to the notorious
GitLab hiring ban on Russian and Chinese citizens. In programming terms, the API-like architecture and
asynchronous work with sockets is a step forward for the actor.

Why we consider the current software architecture interesting

By “enterprise-grade API-like programming style” we mean, firstly, asynchronous work with sockets. In terms
of Windows user-space entities, it was I/O completion ports. In the OS kernel space, this mechanism is
actually a queue for asynchronous procedure calls (APC). We believe there’s a reason for using it in backend
applications on the high-loaded server-side. Obviously, however, neither client-side software nor Trojans of
this kind need this server-side programming approach. So, it looks to us like the developers have applied
some habits from server-side programming.

Secondly, the exported function parameters in the injected library look more like an API: the arguments are
two callback functions – encryptor/decryptor and logger. So, if the authors decide to change encryption or
logging algorithms, they could do so easily without even touching the network module. Once again, even
targeted malicious samples rarely take such architectural issues into consideration.

Another injected library’s exported function parameter is the host name. If the caller doesn’t pass the infected
host name as this parameter, the following commands will not be executed. It filters out all messages to other
hosts.

Initial infection

Module features File name Detection time

Backdoor sideloaded by legit GoogleCrashHandler version.dll 2019.12.31

Downloader/decryptor inside spoolsv.exe address space spoolsv.dll 2020.01.16

Bitmap picture with steganography inside Random .bmp name 2020.01.16

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/06/17112819/sl_microcin_01.png
https://about.gitlab.com/blog/2019/11/12/update-on-hiring/#


3/9

Network module in the same spoolsv.exe address space Module.dll 2020.01.16

Infection timeline

The backdoor is started by GoogleCrashHandler.exe, due to .dll search order hijacking (version.dll). Bitmap
files with a steganography downloader and decryptor (spoolsv.dll), injected into the spoolsv.exe API-like
network module, are injected into the same system process.

Let’s cover the modules one at a time. Our telemetry shows that another Microcin backdoor was already on
the host before this new network module. It’s most probably a reinfection with newer malware.

Backdoor MD5 File name Compilation timestamp Size

c9b7acb2f7caf88d14c9a670ebb18c62 version.dll 2020.05.20 02:37:58 407552

This UPX packed .dll was executed with the legitimate GoogleCrashHandler.exe (very common library search
order hijacking) just before the New Year. The compilation timestamp is obviously spoofed. In this case we
don’t know how the backdoor, along with the legitimate application, was delivered.

We won’t concentrate on this backdoor in this report, because it’s fairly typical for Microcin. We just want to
emphasize that the timeline above shows it existed on the host before the analyzed module.



4/9

Downloader/decryptor

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/06/17113103/sl_microcin_02.png


5/9

The campaign in question starts with the 64-bit spoolsv.dll downloader/decryptor module that has to be loaded
by spoolsv.exe into its address space.

Downloader/decryptor MD5 Modified time Size Build Target ID

c7e11bec874a088a088b677aaa1175a1 2020.03.04 12:20:13 155291 20200304L02f @TNozi96

ef9c82c481203ada31867c43825baff4 2019.10.15 11:46:04 145233 20200120L03o @TNozi96

1169abdf350b138f8243498db8d3451e 2019.01.25 04:58:15 150195 20191119L 123456

So far, we have registered three samples of this module. The file tails contains the following encrypted
configuration data.

Parameter Length
(bytes)

Possible values

.bmp URL
len

4 82

.bmp URL .bmp
URL
len

http://res.cloudinary.com/ded1p1ozv/image/upload/v1579489581/<random_name>.bmp

Sleep time 2 17211 and other non-round random numbers

Module
build
length

4 15

Module
build

Module
build
length

Date based on the previous table

Target ID
length

4 9

Target ID Target
ID
length

Readable strings from the previous table

Random
ASCII
chars

16 Randomly generated on host

Hardcoded
canary

4 0x5D3A48B6

We have published the source code of our decryptor for Microcin’s configuration and steganography at
https://github.com/dlegezo/common.

The bitmap URL serves to download the image (like the one with the sock shown above) with the next stage
network module. The module build, target ID and random ASCII chars are for the next network module, which
includes them in the control server communications.

To get the bitmap, the downloader sends an HTTP GET request to cloudinary.com. The steganography is
inside the color palette part of the .bmp file. A typical decryption algorithm includes four stages:

https://github.com/dlegezo/common


6/9

1. Combine neighboring half bytes into one byte
2. Decrypt data length with custom XOR-based algorithm
3. Decrypt six-byte XOR key for main data
4. Decrypt data itself using decrypted length and key

Besides the configuration data and steganography, the same algorithm is used for the C2 traffic. As we
mentioned, due to the malware architecture, the latter can easily be changed. Encryption is XOR-based, but
the key scheduling is quite specific and tricky. In the corresponding appendix we provide the part of the
decryptor containing the algorithm.

Bitmap images and steganography

Besides the sock image, the campaign operators use more social-oriented photos (payload removed
here). The background here is the GitLab hiring ban on Russian and Chinese citizens

So far, we have registered four different images. The encrypted content in all cases are PE files with the
following network module and C2 domain for the files. This is the only parameter that comes from bitmap; all
others are provided by the downloader.

Image content C2 domain Network module MD5

Sock in washing machine apps.uzdarakchi[.]com 445b78b750279c8059b5e966b628950e

Two people in hoodies forum.mediaok[.]info 06fd6b47b1413e37b0c0baf55f885525

GitLab hiring ban forum.uzdarakchi[.]com 06fd6b47b1413e37b0c0baf55f885525

Woman with child, militaries owa.obokay[.]com 06fd6b47b1413e37b0c0baf55f885525

Network in-memory module

The downloader decrypts the configuration data and C2 domain from the bitmap and then everything is ready
to start the last stage inside the same spoolsv.exe virtual address space. We consider the architectural
approach in this module to be the most interesting part of the chain.

The network module’s entry point is the exported function SystemFunction000() with multiple arguments. As a
beacon, the Trojan prepares an HTTP POST request with the target’s fingerprinting data. And a lot of the
parameters become part of the request.

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2020/06/17113307/sl_microcin_03.png


7/9

Exported function
argument

Parameter meaning

Target host name This has to be the same as the infected machine host name. Only then will the Trojan
start and receive commands. Initialized by the downloader

Target ID We already enumerated these readable ASCII strings from the decrypted
downloader’s config, e.g., @TNozi96

Build version Inside these readable ASCII strings the dates are clearly mentioned. The C2 uses
them to understand which build it’s currently working with

WORD field of
fingerprint structure

Initialized with 0x4004 by the downloader. We don’t have enough data to describe
this field’s meaning

C2 IP address and
port number

The coordinates of the C2, initialized from the decrypted bitmap image

ASCII string in
fingerprint structure

Unique random string generated by the downloader

BYTE to fingerprint
structure

Initialized with 0x4004 by the downloader. We don’t have enough data to describe
this field’s meaning

Half of maximum
sleep time

Sleep time before the working cycle. Half because the full time is counted <this arg>
+ <random>%<this arg>. It’s effectively a maximum of a maximum sleep time

Logger address First callback function address. In this case it’s a logger function inside the
downloader

Encryptor/decryptor
address

Second callback function address. In this case it’s an encryptor/decryptor function
inside the downloader

The last two arguments illustrate why we call the network module API-like: any encryption and logging routine
could be used without even touching the module code. We consider this programming approach as scalable
and useful for large systems. Let’s take a look at these two callback arguments.

Callback and its arguments Callback features

Logger takes ASCII string as a log message Logger function whose parameter is the message
text. In this module all the messages are
shortenings like “LIOO”, “RDOE”, etc.

Encryptor/decryptor to deal with the traffic between
host and C2, takes its length, encryption key, and the
flag (0 to encrypt and 1 to decrypt) as argument data

Encryptor/decryptor function first used to encrypt
beacon with target’s fingerprint. It then decrypts C2
command structures and encrypts replies to them

The module uses the Windows API function WSAIoctl() – something rarely seen in malware – to get the
ConnectEx() address and sends a prepared request. Another Windows API function,
GetQueuedCompletionStatus(), is in charge of asynchronous work with I/O. In other words, the malware uses
I/O completion ports for Windows user-space entities, which is effectively an APC queue in the OS kernel.

The same data structure is used for both sides of the communication: from host to C2 and back. Let’s
describe its main fields here.

Field Features



8/9

Command
code

One byte in the structure is the command code, which could vary from 0x00 to 0x16 (22). We
describe the main network module commands in the table below

Error code Another byte is used for the error code

Command
argument

The main command field that takes all the necessary strings, etc. and also keeps
fingerprinting data in the case of the beacon

So far, we have described the infection chain, module architecture, custom encryption and HTTP POST-
based C2 communication protocol. Last, but not least, is the command set shown in the table below.

Command code Command features

3 Check if target’s ID meets the parameter

4 List logical drives

5 List files

6 Create directory

7 Remove directory

8 Copy file

9 Move file

10 Delete file

11 Execute PE

12 Execute Windows shell command

14 Terminate program

15 File download

16 Read from downloaded file

17 File upload

18 Write to file

19 Stop

20 Sleep

Infrastructure

Domain IP First seen ASN

apps.uzdarakchi[.]com 95.179.136[.]10 November 11, 2019 20473

forum.uzdarakchi[.]com 172.107.95[.]246 February 7, 2020 40676

forum.mediaok[.]info 23.152.0[.]225 March 19, 2020 8100

owa.obokay[.]com N/A (now parked)



9/9

To sum up

This time the Microcin campaign has made an interesting step forward, not in terms of a fancy initial infection
vector, but as programmers. The API-like network module is much easier to support and update. This
improvement is not only about anti-detection or anti-analysis; it’s about software architecture and a step
towards a normal non-monolithic framework implementation.

IoC

Downloader

ef9c82c481203ada31867c43825baff4


1169abdf350b138f8243498db8d3451e

c7e11bec874a088a088b677aaa1175a1

Network module

f464b275ba90b3ba9d0a20b8e27879f5


9320180ef6ee8fa718e1ede01f348689

06fd6b47b1413e37b0c0baf55f885525

625a052ddc80efaab99efef70ba8c84f

Domains and IPs

95.179.136.10


apps.uzdarakchi[.]com

forum.uzdarakchi[.]com

forum.mediaok[.]info


owa.obokay[.]com

Malware Descriptions
Malware Technologies
Steganography
Targeted attacks
Trojan

Authors

	Denis Legezo

Microcin is here

Your email address will not be published. Required fields are marked *

https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/steganography/
https://securelist.com/tag/targeted-attacks/
https://securelist.com/tag/trojan/
https://securelist.com/author/denislegezo/

