
1/13

June 19, 2020

Further Evasion in the Forgotten Corners of MS-XLS
malware.pizza/2020/06/19/further-evasion-in-the-forgotten-corners-of-ms-xls/

It’s been a few weeks since my last discussion of Excel 4.0 macro shenanigans and the
space continues to change. LastLine published a great report which summarized the
progression of weaponized macros from February through May. The good folks at InQuest
have continued identifying malicious macro documents . @DissectMalware‘s excellent
XLMMacroDeobfuscator has massively expanded its range of macro emulation, and
FortyNorth Security released EXCELntDonut , a tool for converting Donut shellcode into
multi-architecture Excel 4.0 macros.

Over the past few weeks I’ve also started seeing some of the files generated by my tool
Macrome begin to trigger detections on VirusTotal . This is exactly the sort of thing I want
to see – besides the fact that it implies that AV is getting better signal on this attack vector, it
also provides an opportunity to improve my tool and take better guesses about what direction
attackers will pivot in the future. I’m a big believer in a @Mattifestation‘s approach to
detection engineering and detection from AV helps move the iterative development of
tooling further along.

After realizing that some of my samples were being detected, I took several documents that
had been generated during testing and submitted each of them to VirusTotal – only the larger
documents appeared to be matching virus signatures. I did a quick binary search of the
document sizes between what was detected on VirusTotal and what wasn’t and discovered
that if a document had greater than 100 CHAR invocations, then it was considered
malicious.

1

2

3 4 5 6

7

8 9

10 11

12

https://malware.pizza/2020/06/19/further-evasion-in-the-forgotten-corners-of-ms-xls/
https://malware.pizza/2020/05/12/evading-av-with-excel-macros-and-biff8-xls/
https://www.lastline.com/
https://www.lastline.com/labsblog/evolution-of-excel-4-0-macro-weaponization/
https://twitter.com/Inquest
https://inquest.net/flash-alerts/IQ-FA004%3AMultiple_Actors_Abusing_New_Macro_Methods
https://twitter.com/InQuest/status/1268568312499376130
https://twitter.com/DissectMalware/status/1268491222299086854
https://twitter.com/Anti_Expl0it/status/1269895583633829888
https://twitter.com/DissectMalware
https://github.com/DissectMalware/XLMMacroDeobfuscator
https://twitter.com/FortyNorthSec
https://github.com/FortyNorthSecurity/EXCELntDonut/
https://github.com/TheWover/donut
https://github.com/michaelweber/Macrome
https://www.virustotal.com/gui/file/b159b25b80b1830acf40813c06a48f3e72666720b7efcd406ea5031c7f214c31/detection
https://twitter.com/mattifestation/
https://twitter.com/mattifestation/status/1263416936517468167

2/13

A “safe” document with exactly 100 =CHAR() expressions

A document that has one too many =CHAR() expressions

3/13

While my generated document had obfuscated the usage of the CHAR function, clearly there
was a signature that could detect these alternate CHAR invocations. For reference, here is
@DissectMalware’s macro_sheet_obfuscated_char rule that the generated document
attempted to avoid:

rule macro_sheet_obfuscated_char
{
 meta:
 description = "Finding hidden/very-hidden macros with many CHAR functions"
 Author = "DissectMalware"
 Sample = "0e9ec7a974b87f4c16c842e648dd212f80349eecb4e636087770bc1748206c3b
(Zloader)"
 strings:
 $ole_marker = {D0 CF 11 E0 A1 B1 1A E1}
 $macro_sheet_h1 = {85 00 ?? ?? ?? ?? ?? ?? 01 01}
 $macro_sheet_h2 = {85 00 ?? ?? ?? ?? ?? ?? 02 01}
 $char_func = {06 ??
?? ?? ?? ?? 1E 3D 00 41 6F 00}
 condition:
 $ole_marker at 0 and 1 of ($macro_sheet_h*) and #char_func > 10
}

My previous blog post discussed how to break the longer signature for $char_func , but it
didn’t address what to do if the signature for the CHAR function were more reliable. In this
case the signature was likely only the the three bytes of a PtgFunc invocation with the
CHAR Ftab value (41 6F 00) but repeatedly occurring enough times to avoid false
positives. This is likely the reason for the “high” minimum count requirement of 101+
instances versus the 11+ in the macro_sheet_obfuscated_char rule.

An

obfuscated invocation of CHAR(65) that triggered results on VirusTotal after 101+ instances
were used
One “quick” hack to bypass this signature is to abuse the fact that PtgFuncVar can be
used instead of PtgFunc to invoke the CHAR function (42 01 6F 00). PtgFuncVar is
largely identical to PtgFunc except for the fact that PtgFuncVar must also be provided with
the number of arguments being passed into the called function. While PtgFunc is only used
to call functions with a fixed number of arguments, there is nothing that stops us from
invoking PtgFuncVar and providing the correct argument count. PtgFunc(CHAR) is identical
to PtgFuncVar(1,CHAR).

Hex

dump of a FORMULA BIFF8 record using the alternate PtgFuncVar(1,CHAR) invocation

13

14

15

16

17

https://pastebin.com/V8SGgdZL
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87ce512d-273a-4da0-a9f8-26cf1d93508d
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/00b5dd7d-51ca-4938-b7b7-483fe0e5933b
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5d105171-6b73-4f40-a7cd-6bf2aae15e83
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/8e3c6978-6c9f-4915-a826-07613204b244

4/13

This is a nice signature evasion trick, but it ultimately is vulnerable to the same method of
detection, just with a slightly different byte signature. Fundamentally, many tricks that macro
sheets rely on in order to deobfuscate themselves will rely on invoking a handful of functions
repeatedly. Large macro payloads can require invoking some form of CHAR and FORMULA
hundreds of times – what will adversaries do once there are better signatures put into place
for detecting suspiciously repeated usages of these functions?

Re-Enter the Subroutine

In normal programming, when we constantly call the same code over and over again, we
write a function. Even in VBA macros, the idea of subroutines exist to allow for simple code-
reuse. While the Excel 4.0 Macro Functions Reference mentions the idea of Excel 4.0
macro subroutines several times – it never actually details how these can be created.

In practice, Excel 4.0 macro subroutines are really just a sequence of RUN and RETURN
functions. A subroutine is invoked by calling the RUN function with an argument referencing
the start cell of the sub-macro. Execution then starts at that cell and continues down the
column until a RETURN function is invoked. The argument passed to RETURN is what the
return value of the function will be. For example, if we wanted to create a subroutine that
would eventually return the string “Hello World”, it would look something like this:

A simple example of an Excel

4.0 macro subroutine – it will eventually pop up an alert saying “Hello World”
Excel actually even aliases the RUN command by letting users specify a cell reference or
cell name and invoke it directly by appending () to the invocation as seen below:

This is functionally identical to

the previous Macro sheet

18

https://exceloffthegrid.com/using-excel-4-macro-functions/

5/13

This is also the same, except

B1 has been named MySub
It’s not a very common way to see macros used right now, but malware authors are clearly
already aware of this as can be seen from a sample shared by @JohnLaTwc and analyzed
by @DissectMalware:

Example behavior from a maldoc submitted to VirusTotal in March 2019 (Image from
@DissectMalware)
While using subroutines in this way might be slightly helpful for slowing analysis of a
document, it’s really only dipping its toes into the potential of “proper” subroutine usage in a
maldoc. For example, what if instead of having the byte sequence 41 6F 00 every time we
invoked CHAR, we moved the CHAR expression into a subroutine and just invoked the
subroutine repeatedly? The predictable function invocation would only appear once, and it
would be much harder to claim that EVERY usage of CHAR is malicious. Even Windows
Defender’s aggressive blocking of =CHAR(#) invocations requires other conditions beyond
matching three bytes. Here’s an example of what replacing the CHAR expression with a
subroutine looks like:

19

20

https://twitter.com/DissectMalware/status/1269535826813366273
https://www.twitter.com/JohnLaTwc
https://www.twitter.com/DissectMalware
https://www.virustotal.com/gui/file/a53be0bd2a838ffe172181f3953a2bc8a1b7c447fb56d885391921a7c3eac1f9/details
https://www.twitter.com/DissectMalware

6/13

We can actually “create” our

subroutine at runtime using SET.NAME to specify the subroutine cell and its argument
So this is slightly different from our previous examples, but the main difference is that we are
invoking SET.NAME in order to specify two values:

1. We are defining the value of InvokeCharSub to be equivalent to a reference to cell B1.
Later we invoke it using InvokeCharSub(), though we could also use
RUN(InvokeCharSub).

2. We are setting the value of the name “arg” to 65. This is essentially how we pass
arguments to our subroutine. While there does appear to be an ARGUMENT function
that allows explicitly defining names to store arguments, I haven’t been able to make
this work any differently than just manually setting names or cell values. While porting
EXCELntDonut macros into Macrome I also realized that you can simply write
arg=65 in an Excel cell, and it will automatically be interpreted as
SET.NAME(“arg”,65)

What a User Defined Function invocation looks like in byte form
Under the covers when we call InvokeCharSub(), we are having Excel call a user defined
function through the PtgFuncVar Parse Thing object. User defined functions are a
PtgFuncVar edge case – one of the arguments provided to the PtgFuncVar must be a
PtgName . PtgName objects reference a Lbl entry stored within the Excel Workbook’s
Globals Substream . In this case, we are looking for the 3rd Lbl entry in the substream – it’s
also worth noting that the index here starts at 1, rather than 0. We’ll come back to some “fun”
that malware authors can have with these labels later.

21

22 23

24

https://github.com/michaelweber/Macrome/releases/tag/0.2.0
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5f05c166-dfe3-4bbf-85aa-31c09c0258c0
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/d148e898-4504-4841-a793-ee85f3ea9eef
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/ca4c1748-8729-4a93-abb9-4602b3a01fb1

7/13

The Lbl list from our test document’s Globals Substream – the 3rd item is InvokeCharSub,
our subroutine name
So we have a mechanism to replace our CHAR function invocations with SET.NAME
invocation followed by a call to a user defined function. This turns one very simple cell into
two cells, but there’s a workaround for that as well. A final possible optimization to reduce the
size of our document is to combine our variable assignment with the invocation of our
subroutine by abusing the IF function to execute two expressions in a single cell – for
example:

=IF(SET.NAME("var",65),invokeChar(),)

The invocation of SET.NAME here saves us from having to use two cells to invoke our
subroutine and lets us use a single cell which cuts down on our FORMULA record count by
about half. This is the approach used by the CharSubroutine method in Macrome .

Going back to @Mattifestation‘s detection engineering approach – let’s think about how we
could detect this sort of approach and then analyze it. From a detection standpoint, a
massive number of invocations of SET.NAME and PtgFuncVar objects with a user defined
function would likely stand out. For example, if we look at the above IF statement at the byte
level we get something like:

A

single FORMULA record containing the SET.NAME and user defined function invocation
We can create a signature for this by keying on the presence of a PtgFuncVar invocation of
SET.NAME (42 02 58 00) with some arbitrary locality to a PtgFuncVar invoking a user
defined function (42 ?? FF 00 – the Ftab value is FF 00 , but we need a wildcard since
we can’t necessarily guess the argument count). Our signature doesn’t need to care if
SET.NAME comes before or after the user defined function, we just want to check for a large
number of these instances. A Yara signature for this could look like:

10

25

https://github.com/michaelweber/Macrome
https://twitter.com/mattifestation/
https://virustotal.github.io/yara/

8/13

rule msxls_set_name_and_invoke_udf
{
 meta:
 description = "Finding XLS2003 documents with a suspicious number of SET.NAME and
User Defined Function invocations"
 Author = "Michael Weber (@BouncyHat)"
 strings:
 $ole_marker = {D0 CF 11 E0 A1 B1 1A E1}
 $setname_invokeudf = {42 02 58 00 [0-100] 42 ?? FF 00}
 $invokeudf_setname = {42 ?? FF 00 [0-100] 42 02 58 00}
 condition:
 $ole_marker at 0 and (#setname_invokeudf > 100 or #invokeudf_setname > 100)
}

Note that the wildcard range [0-100] probably makes this computationally expensive to
run on a large dataset, but the upper bound of 100 wildcard bytes could be lowered as
needed.

This signature could still be avoided (as is true for most signatures) with a little additional
effort on the part of the attacker. As demoed in Outflank’s research , we can use Excel’s
WHILE functionality to iterate over a column of seemingly harmless numbers and use them
to build strings of binary data or additional macro statements to populate with the FORMULA
function.

Here we have a Macro, starting

at B1, that replaces our numerous CHAR() invocations with a subroutine at A1
But let’s assume that there is a foolproof signature to identify our document and that our
document has made its way into the hands of an analyst armed with a tool like
XLMMacroDeobfuscator or olevba . Are there any weird behaviors that can be abused to
trick analysts attempting to examine our document? Thanks to Excel’s “flexibility” with Lbl
records, the answer is yes.

(Ab)Using Names in Excel 4.0 Macros

The usage of Lbl record lookups when resolving names is another opportunity for malware
authors to frustrate analysis. In my previous blog post I discussed how Excel’s flexible
handling of the Auto_Open Lbl record made signature creation extremely challenging. It

26

6 27

1

https://outflank.nl/blog/2018/10/06/old-school-evil-excel-4-0-macros-xlm/
https://github.com/DissectMalware/XLMMacroDeobfuscator
https://github.com/decalage2/oletools/wiki/olevba
https://malware.pizza/2020/05/12/evading-av-with-excel-macros-and-biff8-xls/

9/13

seems like similar issues would apply to “variable” and subroutine name invocation as well.
For example – what would you expect the output of the following macro sheet to be?

Assuming case sensitivity

were used, the string “arg” should be displayed

But Excel Lbl records are

much more flexible than that
This looks like a nice trick, but it doesn’t appear to do much to frustrate analysis – at a
glance. Just HOW flexible is Excel’s interchangeability with upper case and lower case
letters?

What happens if we go into the Unicode character sets?

Obviously the lower case Zeta symbol (ζ)

was going to overwrite that capital Zeta (Ζ)
It’s pretty flexible. There are a surprising number of multi-case characters to confuse Excel,
just take a glance at the library of valid lower case Unicode characters . Unfortunately, for
defenders, the PtgStr record used by Excel to invoke SET.NAME will happily allow
attackers to set arbitrary Unicode content for arguments, so this is a challenging situation to
avoid. The issues don’t stop at casing confusion either – Excel also respects Unicode
Equivalence . This behavior, which is part of the Unicode specification , is a consistent
source of pain in the security world .

28

29

30 31 32

33 34

https://www.compart.com/en/unicode/category/Ll
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87c2a057-705c-4473-a168-6d5fac4a9eba
https://en.wikipedia.org/wiki/Unicode_equivalence
https://www.unicode.org/versions/Unicode13.0.0/UnicodeStandard-13.0.pdf
https://www.dionach.com/en-us/blog/fun-with-sql-injection-using-unicode-smuggling/
https://hackernoon.com/%CA%BC-%C5%9B%E2%84%87%E2%84%92%E2%84%87%E2%84%82%CA%88-how-unicode-homoglyphs-will-break-your-custom-sql-injection-sanitizing-functions-1224377f7b51
https://book.hacktricks.xyz/pentesting-web/unicode-normalization-vulnerability

10/13

One example of how Unicode Equivalence can frustrate analysis is Decomposed Unicode.
Decomposed Unicode values are alternate representations of Unicode characters that use a
series of characters instead of a single Unicode character. For example – consider the
Unicode character ḁ . This can be represented as 2 bytes in UTF-16 (Excel’s Unicode
interpretation) as 1E 01 . Alternatively, we can represent it as the letter a and the ��
combining diacritical mark – or 00 61 03 25 . (Note: These diacritical marks are the
same bit of fun that can be used to create Zalgo monstrosities)

There also exist Unicode characters, like the Combining Graphene Joiner (03 4F) which
are essentially no-op characters for most Unicode strings. The Wikipedia article for the
character explicitly describes it as “default ignorable” in the first sentence:

“The combining grapheme joiner (CGJ), U+034F COMBINING GRAPHEME
JOINER (HTML) is a Unicode character that has no visible glyph and is “default
ignorable” by applications.”

https://en.wikipedia.org/wiki/Combining_Grapheme_Joiner

Finally, there are a sizable number of Unicode whitespace characters which can change
the byte contents of a string without changing its appearance. The “most interesting” of these
whitespace characters are the zero-width Unicode characters. A zero-width character makes
no visible change to the label. Some of these characters are ignored by Excel when
comparing strings (U+200C, U+200D, U+2060, and U+FFEF), but others (U+180E and
U+200B) are not. These characters can be used to pad variable names, or create decoy
names that look the same but are not actually assigned when invoking SET.NAME.

There’s nothing fundamentally bad about following the Unicode specification, but combining
support for Unicode equivalence with some of Excel’s other flexibility can lead to very
counter-intuitive equivalencies. For example, 1E 01 (ḁ) is considered the same as 20 60
00 41 03 25 03 4F 00 (a decomposed Ḁ with some ignored Unicode characters added to
the string). Replacing some of those bytes with a 18 0E or 20 0B would break the
equivalency as well, which allows us to create strings that look identical, but are not treated
as such by Excel. In practice this lets us create, using Macrome’s
AntiAnalysisCharSubroutine method, the following content :

35

36

37

38

39

10

https://www.compart.com/en/unicode/U+1E01
https://www.compart.com/en/unicode/U+0325
https://zalgo.it/en/
https://en.wikipedia.org/wiki/Combining_Grapheme_Joiner
https://en.wikipedia.org/wiki/Combining_Grapheme_Joiner
https://en.wikipedia.org/wiki/Whitespace_character
https://github.com/michaelweber/Macrome

11/13

It is random whether the first SET.NAME or second SET.NAME in each cell set the value
passed to the subroutine
Although the vḁr strings appear to be identical, they are in fact quite different on disk. This
means that any analysis of the cell to figure out what will actually happen will require running
Excel or manually reproducing Excel’s EXACT handling of Unicode characters. Reproducing
the behavior is going to require handling a lot of edge cases. If you want a sense of what
analysts could be up against, here’s what the above example looks like in binary:

Note that both SET.NAME arguments are very different from the Lbl name used in
=RETURN(CHAR(‘vḀr’))
In the above example the “Real” argument bytes are considered a match for the Lbl name
bytes, but the “Decoy” argument bytes are not. The fact that Lbl record strings can be so
wildly different from the PtgStr arguments passed to SET.NAME makes it challenging to
follow Excel’s data flow without actually running Excel. Even then, Excel isn’t consistent with
handling Unicode values – see what happens when null bytes are injected into the
Auto_Open label after the u character:

12/13

The Name

Manager sees Au, but the cell label is AuTo_OpEn
Given the already low detection rate for Excel 4.0 macros in the wild, we may never see
attackers need to rely on this level of trickery. If AV does start getting better signal with their
signatures though, I will not be surprised to see various forms of Unicode abuse begin to
crop up.

Updates to Macrome

In the process of digging deeper into Excel documents, I’ve often come across a need to
examine the byte content of specific records as a hex dump. While I don’t mind crawling
through a wall of hex text, I’ve managed to save some time by modifying my tool Macrome to
dump the hex content of Lbl and Formula records. All of the hex examples from this post
were generated using this dump functionality. I’ve also implemented code for generating
proof-of-concept documents using some of the subroutine and Unicode shenanigans that I
discussed in this post. If you want to try generating some malicious documents to see how
your tooling will handle these kinds of documents I’d suggest heading over to
https://github.com/michaelweber/Macrome and grabbing the latest release.

As always, if folks have any suggestions for features or improvements, please let me know
here in the comments or open an issue on the Github project page.

References

1. https://malware.pizza/2020/05/12/evading-av-with-excel-macros-and-biff8-xls/
2. https://www.lastline.com/labsblog/evolution-of-excel-4-0-macro-weaponization/
3. https://inquest.net/flash-alerts/IQ-

FA004%3AMultiple_Actors_Abusing_New_Macro_Methods
4. https://twitter.com/InQuest/status/1268568312499376130
5. https://twitter.com/DissectMalware/status/1268491222299086854
6. https://github.com/DissectMalware/XLMMacroDeobfuscator
7. https://twitter.com/Anti_Expl0it/status/1269895583633829888
8. https://github.com/FortyNorthSecurity/EXCELntDonut/
9. https://github.com/TheWover/donut

10. https://github.com/michaelweber/Macrome
11. https://www.virustotal.com/gui/file/b159b25b80b1830acf40813c06a48f3e72666720b7ef

cd406ea5031c7f214c31/detection

https://github.com/michaelweber/Macrome
https://github.com/michaelweber/Macrome
https://malware.pizza/2020/05/12/evading-av-with-excel-macros-and-biff8-xls/%E2%80%A8
https://www.lastline.com/labsblog/evolution-of-excel-4-0-macro-weaponization/%20%E2%80%A8
https://inquest.net/flash-alerts/IQ-FA004%3AMultiple_Actors_Abusing_New_Macro_Methods
https://twitter.com/InQuest/status/1268568312499376130
https://twitter.com/DissectMalware/status/1268491222299086854
https://github.com/DissectMalware/XLMMacroDeobfuscator%E2%80%A8
https://twitter.com/Anti_Expl0it/status/1269895583633829888
https://github.com/FortyNorthSecurity/EXCELntDonut/%E2%80%A8
https://github.com/TheWover/donut
https://github.com/michaelweber/Macrome
https://www.virustotal.com/gui/file/b159b25b80b1830acf40813c06a48f3e72666720b7efcd406ea5031c7f214c31/detection

13/13

12. https://twitter.com/mattifestation/status/1263416936517468167
13. https://pastebin.com/V8SGgdZL
14. https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87ce512d-273a-

4da0-a9f8-26cf1d93508d
15. https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/00b5dd7d-51ca-

4938-b7b7-483fe0e5933b
16. https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5d105171-6b73-

4f40-a7cd-6bf2aae15e83
17. https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/8e3c6978-6c9f-

4915-a826-07613204b244
18. https://exceloffthegrid.com/using-excel-4-macro-functions/
19. https://twitter.com/DissectMalware/status/1269535826813366273
20. https://www.virustotal.com/gui/file/a53be0bd2a838ffe172181f3953a2bc8a1b7c447fb56

d885391921a7c3eac1f9/details
21. https://github.com/michaelweber/Macrome/releases/tag/0.2.0
22. https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5f05c166-dfe3-

4bbf-85aa-31c09c0258c0
23. https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/d148e898-4504-

4841-a793-ee85f3ea9eef
24. https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/ca4c1748-8729-

4a93-abb9-4602b3a01fb1
25. https://virustotal.github.io/yara/
26. https://outflank.nl/blog/2018/10/06/old-school-evil-excel-4-0-macros-xlm/
27. https://github.com/decalage2/oletools/wiki/olevba
28. https://www.compart.com/en/unicode/category/Ll
29. https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87c2a057-705c-

4473-a168-6d5fac4a9eba
30. https://en.wikipedia.org/wiki/Unicode_equivalence
31. https://www.unicode.org/versions/Unicode13.0.0/UnicodeStandard-13.0.pdf
32. https://www.dionach.com/en-us/blog/fun-with-sql-injection-using-unicode-smuggling/
33. https://hackernoon.com/%CA%BC-

%C5%9B%E2%84%87%E2%84%92%E2%84%87%E2%84%82%CA%88-how-
unicode-homoglyphs-will-break-your-custom-sql-injection-sanitizing-functions-
1224377f7b51

34. https://book.hacktricks.xyz/pentesting-web/unicode-normalization-vulnerability
35. https://www.compart.com/en/unicode/U+1E01
36. https://www.compart.com/en/unicode/U+0325
37. https://zalgo.it/en/
38. https://en.wikipedia.org/wiki/Combining_Grapheme_Joiner
39. https://en.wikipedia.org/wiki/Whitespace_character

https://twitter.com/mattifestation/status/1263416936517468167
https://pastebin.com/V8SGgdZL
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87ce512d-273a-4da0-a9f8-26cf1d93508d
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/00b5dd7d-51ca-4938-b7b7-483fe0e5933b
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5d105171-6b73-4f40-a7cd-6bf2aae15e83
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/8e3c6978-6c9f-4915-a826-07613204b244
https://exceloffthegrid.com/using-excel-4-macro-functions/
https://twitter.com/DissectMalware/status/1269535826813366273
https://www.virustotal.com/gui/file/a53be0bd2a838ffe172181f3953a2bc8a1b7c447fb56d885391921a7c3eac1f9/details
https://github.com/michaelweber/Macrome/releases/tag/0.2.0%E2%80%A8
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/5f05c166-dfe3-4bbf-85aa-31c09c0258c0
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/d148e898-4504-4841-a793-ee85f3ea9eef
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/ca4c1748-8729-4a93-abb9-4602b3a01fb1
https://virustotal.github.io/yara/%E2%80%A8
https://outflank.nl/blog/2018/10/06/old-school-evil-excel-4-0-macros-xlm/
https://github.com/decalage2/oletools/wiki/olevba
https://www.compart.com/en/unicode/category/Ll
https://docs.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/87c2a057-705c-4473-a168-6d5fac4a9eba
https://en.wikipedia.org/wiki/Unicode_equivalence
https://www.unicode.org/versions/Unicode13.0.0/UnicodeStandard-13.0.pdf
https://www.dionach.com/en-us/blog/fun-with-sql-injection-using-unicode-smuggling/
https://hackernoon.com/%CA%BC-%C5%9B%E2%84%87%E2%84%92%E2%84%87%E2%84%82%CA%88-how-unicode-homoglyphs-will-break-your-custom-sql-injection-sanitizing-functions-1224377f7b51
https://book.hacktricks.xyz/pentesting-web/unicode-normalization-vulnerability
https://www.compart.com/en/unicode/U+1E01%E2%80%A8
https://www.compart.com/en/unicode/U+0325%E2%80%A8
https://zalgo.it/en/
https://en.wikipedia.org/wiki/Combining_Grapheme_Joiner
https://en.wikipedia.org/wiki/Whitespace_character

